
The KDE Multimedia Architecture

Jeff Tranter
tranter@kde.org

Abstract

This paper and presentation will give an overview of
the new multimedia architecture introduced in KDE
2.0. The emphasis will be on aRts, the Analog Real-
Time Synthesizer that provides the foundation for
multimedia on KDE. The presentation will describe
the overall architecture of aRts, give details of the
key aRts components such as structures, streams,
interfaces, instruments, and the sound server. It
will briefly cover the aRts application programming
interface, and discuss the current state of multime-
dia in KDE and some of the future plans.

1 Introduction

This paper presents an overview of the multimedia
architecture provided by KDE, with an emphasis on
aRts, the Analog Real-Time Synthesizer.

I first give some background on the history of aRts

and multimedia on KDE. I then go over the KDE
multimedia architecture and key concepts. I will
give an example of the code for an aRts effects mod-
ule, and show how it can be used from artsbuilder,
the interactive sound development tool for aRts.

I’ll briefly review each of the KDE multimedia ap-
plication programming interfaces (APIs), showing a
few coding examples along the way. I’ll also discuss
strategies for porting existing multimedia applica-
tions to aRts.

Finally, I’ll review the current status of multime-
dia on KDE, outline the plans for the future, and
provide some references to more information.

The material being presented assumes familiarity
with C++ and the basic concepts behind digital au-
dio. A few of the examples assume some knowledge
of developing for KDE as well.

While much of the discussion focuses on Linux, keep
in mind that KDE runs on several other operating
systems, in some cases with a reduced level func-
tionality in the case of multimedia. It should also
be noted that aRts itself is portable and can be
built and used without KDE.

All of the aRts libraries (which is the majority of
the code) are released under the GNU Lesser Gen-
eral Public License. This allows the libraries to be
used for non-free or non-open source applications
if desired. Some of the programs, like the sound
server, are released under the GNU General Public
License.

2 Overview and History

KDE is the K Desktop Environment, a free, open
source graphical desktop for Linux and several other
Unix-compatible operating systems.

KDE version 1 had very limited multimedia sup-
port. For KDE 2 it was recognized that multimedia
had become important on the desktop and a more
powerful infrastructure was needed. The develop-
ers took a look at what already existed, and came
across the aRts project being developed by Stefan
Westerfeld.

Since 1997 Stefan had been working on a a real-time,
modular system for sound synthesis. It had evolved
to include graphical elements built using KDE and
ran primarily on Linux. The project at this stage
was quite complete, with a CORBA-based protocol,
dozens of audio effects modules, a graphical module
editing tool, C and C++ APIs, documentation, util-
ities, and a mailing list and web site with a small
group of developers.

Impressed by aRts, the KDE team decided to use
it as the basis for the multimedia architecture for
KDE 2.0. With this decision the pace of aRts de-

aRts Foreign Apps

Sound Server API

KMedia2

Sound Drivers (OSS/Free, ALSA, etc.)

ArtsFlow flow/streaming

aRts

Native Apps
C API KDE Extensions

MCOP transport/object model/C+ binding

Figure 1: aRts Block Diagram

velopment accelerated. Significant new effort took
place, most notably the replacement of the CORBA
code with an entirely new subsystem, MCOP, opti-
mized for multimedia. The KDE applications were
adapted to use the new sound system, and the sound
server was integrated into the control center. Ver-
sion 0.4 of aRts was included in the KDE 2.0 re-
lease.

Work continues on aRts, improving performance
and adding new functionality. It should be noted
that even though aRts is now a core component of
KDE, it can be used without KDE, and is also be-
ing used for applications that go beyond traditional
multimedia. The project has also attracted some
interest from the GNOME team, opening up the
possibility that it may someday become the stan-
dard multimedia architecture for both of the major
desktop environments.

3 aRts Architecture

Figure 1 is a high level block diagram showing the
structure of aRts. At the the top of the diagram
are the multimedia applications. Those written to
use aRts directly (“Native Apps”) make use of the
sound server API and optionally the lower level
APIs such as KMedia2 and artsflow. Applications
not specifically written for aRts (“Foreign Apps”)
can still use the system using KDE extensions such
as knotify and kaudioplayer. Applications writ-
ten in C can use the C API (aRts and KDE are
written in C++). As we will see later, there are
also facilities to run existing non-aRts applications

directly using the artsdsp utility.

The sound server API is the main interface into the
aRts services. It is built on top of other layers
such as the streaming and flow system and MCOP
transport.

At the lowest level are the kernel drivers for the
sound hardware, which on Linux can be the OSS/-
Free, OSS/4Front (commercial), or ALSA drivers.

In the next section we will describe many of the con-
cepts and capabilities of the system in more detail.

4 aRts in Detail

Before looking at the APIs we need to review the
major concepts in aRts, starting with the design
goals.

4.1 aRts Philosophy and Goals

aRts (note the capitalization) stands for Analog
Real-Time Synthesizer, but its architecture can be
applied to any streaming media, not just sound.
The system was designed to meet a number of goals:

4.1.1 Modularity

It is built on small building blocks called modules.
One can dynamically build up complex audio pro-
cessing tools by connecting these modules together.
Typical modules include sound waveform genera-
tors, filters, audio effects, mixers, and playback of
digital audio in different file formats.

4.1.2 Portability

The core aRts code is not tied to any GUI toolkit.
It is written in C++ and runs on multiple operating
systems. The programming interfaces are defined in
a language-independent way using IDL.

4.1.3 High Performance

Components of aRts communicate using a
lightweight protocol called MCOP (Multimedia
COmmunication Protocol). It provides network
transparency, low latency, and authentication.

4.1.4 Rich Functionality

The system provides high-level multimedia capabil-
ities, simplifying the development of applications.
As new capabilities are added, such as support
for new file formats, applications can automatically
take advantage of these features.

4.2 Sound Server

Typical multimedia applications that use sound di-
rectly open and access the hardware devices such
as /dev/dsp to record and play back audio. Only
one application can open this device at a time, how-
ever. This causes a problem in a desktop environ-
ment where multiple applications may want to use
the sound resources concurrently. For example, the
user may have associated sounds with window man-
ager events, a mail client may play a sound to notify
of new mail, and the user may want to listen to an
MP3 file. The solution to this is to use a centralized
sound server which accepts requests from multiple
applications, mixes the audio together, and sends it
to the sound hardware. In aRts, the sound server
is artsd, and one and only only copy of artsd is
normally executing when a user is running KDE.

Using a central sound server also makes it easier
to support network transparency, where the sound
server can be on a different host from where the ap-
plication is running. This means, for example, that
if you redirect the X11 display for an application,
the sound can also be routed to the machine where
the display, mouse, and keyboard reside.

The sound server has a number of options which can
be adjusted (either from the command line or the
KDE sound server control panel) but typically as a
user you don’t have to be aware of it — it starts up
as part of the KDE desktop.

A nice feature of artsd is that, on systems that
support it, it can run with real-time scheduling pri-

ority so that clicks or dropouts can generally be
avoided. It also has parameters that can be ad-
justed to balance the tradeoff between CPU usage,
response time, and probability of dropouts.

The sound server will also suspend itself if idle for
a configurable period of time or from a command.
Since it frees up the sound device when suspended,
this is one way to run legacy applications (but gen-
erally only as a last resort; we’ll discuss this later).

4.3 Modules and Ports

Modules in aRts are small self-contained compo-
nents that do one thing. Their interfaces are de-
fined in IDL. Modules have input and output ports
through which multimedia streams can pass. Like
C++ classes, they can have attributes and can im-
plement methods.

aRts comes with several dozen predefined mod-
ules for performing functions such as mixing and
arithmetic functions, delays, effects (tremolo, re-
verb, echo), filters, waveform synthesis, and MIDI.
It is straightforward to develop new modules. We
will look at an example of a module later.

4.4 Structures

Modules can be connected together dynamically to
build up structures. The artsbuilder application
lets you graphically build up structures, save them
as data files, and send them to the sound server to
be executed. A typical structure could implement
an effect such as reverb by using modules for delay,
filtering, and mixing of audio streams. A screen shot
of artsbuilder is shown in Figure 4.

4.5 Busses

Busses allow one to dynamically connect modules
and structures using named connections. Data
streams are sent out uplinks and come in on down-
links. All signals on a bus are added (mixed) to-
gether and are passed as two (stereo) channels.
Busses make it easy to dynamically hook effects in
and out of the audio streaming system.

4.6 GUI Elements

Some effects require user interaction. A mixer, for
example, is not very useful unless a user can adjust
the levels. Effects could also be primarily output el-
ements like a level meter or spectrum analyzer. Ide-
ally this could be done by the modules themselves
rather than having to hard code the user interface
into an application. This is what GUI elements pro-
vide — common widgets such as sliders and knobs
and an output window to contain them.

Since they are modules, the GUI elements are de-
fined in IDL, and in theory the elements could be im-
plemented using different toolkits (e.g. Qt, Gtk+).
Then, with a tool such as artsbuilder, you could
dynamically create your application. One can envi-
sion a mixer application which is customized with
the number of mixer controls, level meters, effects,
and equalizers that the end user wants in his vir-
tual recording studio. All this could be done by a
non-programmer without writing any code.

GUI elements are currently at an experimental stage
in aRts.

4.7 MCOP

MCOP is the multimedia communication protocol
used by aRts — you can think of it as a lightweight
version of CORBA or DCOM optimized for stream-
ing multimedia data. You define interfaces in IDL
(Interface Definition Language). From the IDL in-
terface definition the MCOP IDL compiler will gen-
erate skeleton code (currently just C++ is sup-
ported) which provides the base functionality. You
derive from the skeleton class to implement your
specific functionality.

MCOP takes care of handling network transparency
and security. We’ll examine this in more detail when
we look at an example of an aRts module.

4.8 MIDI

As well as working with synchronous streams of au-
dio samples, aRts has facilities for working with
asynchronous MIDI messages.

MIDI stands for Musical Instrument Digital Inter-

/**

* A module which adds two audio streams

*/

interface Synth_ADD : SynthModule {

default in audio stream invalue1, invalue2;

out audio stream outvalue;

};

Figure 2: Excerpt from artsflow.idl

face and is a standard for event-based messaging
for electronic music devices. A typical MIDI event
could indicate that a key on a music keyboard had
been pressed, which key it was, and how hard it was
hit. The full MIDI specification defines a hardware
level protocol for devices (like music keyboards), the
software message protocol, and a file format.

aRts lets you send and receive MIDI messages from
MIDI devices, as well as software-based MIDI appli-
cations. A MIDI Manager handles connecting the
different devices. aRts allows you create MIDI in-
struments, including mapped instruments.

MIDI support in aRts is relatively new and in rapid
development, so check the latest version in CVS if
you want to work with it.

4.9 Example: an aRts Module

Let’s take a quick look at a real aRts module. We’ll
use a module that already exists so you can look at
the code, but writing a new module is quite straight-
forward.

A common requirement in audio applications is to
mix sound sources together. In aRts, an audio
stream is just a sequence of floating point numbers
representing sound levels sampled at moments in
time. To mix two streams together we merely need
to arithmetically add them. For our example we
want to create a module which accepts two input
streams, adds them together, and outputs the re-
sult as an outgoing stream.

To create a module we first have to define it in IDL.
The module we will look at is called Synth ADD
and it can be found in the file $KDEDIR/kdelibs/-
arts/flow/artsflow.idl (where $KDEDIR is the
base directory where KDE is installed), the relevant
portion of which is shown below in Figure 2

At first glance it looks a lot like C++, but IDL in
aRts provides a number of conveniences to make
development of a module easier. You declare the
interface using the interface keyword, giving it a
name, Synth ADD. We inherit from the existing
interface SynthModule, which in this case provides
all of the base functionality (attributes and meth-
ods) that is needed for any “synthesizer” type mod-
ule. If you’re curious, the SynthModule is defined
earlier in the same source file. The first line inside
the declaration defines two audio input streams and
one output audio stream. The stream type for audio
data is directly understood by aRts. The default
keyword is a hint to aRts to use these streams by
default when connecting the module to other mod-
ules.

We also could have defined attributes for our mod-
ule, which are data associated with an instance of
the module, and methods which are functions as-
sociated with the module instance. In our case we
have no need for any attributes or methods beyond
those that we inherit from the parent SynthMod-
ule. Interfaces cannot include any procedural code.

Running our IDL file though the mcopidl com-
piler tool produces a header file and a C++ skele-
ton class. This provides all of the boilerplate code
needed in order for our module to work with MCOP.
From the input file artsflow.idl, the output files
will be artsflow.h and artsflow.cc. The skeleton
class is called Synth ADD skel.

To implement our module we subclass
Synth ADD skel. This is where we implement
the functionality specific to our module, in this
case adding of streams. We do that in the file
synth add impl.c, shown in its entirety (less
comments) in Figure 3.

A number of methods are defined by SynthModule.
The skeleton class provides default implementations
for them. Depending on what your module does
you need to override these methods to implement
the functionality you need. In our case we need
to implement the method calculateBlock() which
is called by the media streaming system whenever
there is data available for the module to process.
The method is passed a parameter indicating the
number of samples, and the module streams we de-
fined have been mapped into arrays of type float
with corresponding names. We simply step through
the array, adding the input samples and assigning
them to the output array.

#include "artsflow.h"

#include "stdsynthmodule.h"

using namespace Arts;

namespace Arts {

class Synth_ADD_impl

: public Synth_ADD_skel, public StdSynthModule

{

public:

void calculateBlock(unsigned long samples)

{

unsigned long i;

for(i = 0;i < samples; i++)

outvalue[i] = invalue1[i] + invalue2[i];

}

};

REGISTER_IMPLEMENTATION(Synth_ADD_impl);

};

Figure 3: Implementation of Synth ADD Module

The REGISTER IMPLEMENTATION macro
takes care of telling the MCOP object system that
we have implemented an interface. Typically we
will build our module as a loadable library, and the
MCOP dynamic library loading mechanism will be
able to find and load our implementation at run
time.

To use the module, we can run the
artsbuilder tool. From the Mod-
ules/Synthesis/Arithmetic+Mixing menu item
you can see Arts::Synth ADD in the list of
modules. For an example of an aRts structure
file that uses the Synth ADD module, load the
example example dtmf1.arts. This example adds
together the signals from two sine wave generators
and sends them to the audio output. The tone
produced is the same as the one used to signal the
digit “1” on a telephone keypad. Figure 4 shows
this module being editted from artsbuilder.

The example shown later in the section on artsflow
illustrates creating a similar connection of modules
from application code.

5 aRts APIs

In this section I will give a very quick overview of
each of the major aRts APIs, including some ex-

Figure 4: The artsbuilder Module Editor

ample programs.

5.1 KNotify

This is part of the more general notification system
of KDE. Applications can issue events which can
cause actions to occur. In the case of multimedia,
you can associate events with sounds. The associa-
tion is configured using the System Notifications
panel found in the KDE Control Center under Look
& Feel. The notifications can be application spe-
cific, or common to KDE such as standard dialog
boxes. An event can trigger actions to log to a file,
play a sound, show a message box, or write to stan-
dard error output. Allowing the user to customize
the behaviour makes it very flexible, and the library
functions provided make it easy for the developer to
use.

Events are defined in eventsrc files. Stan-
dard events common to KDE are defined in
the file $KDEDIR/share/apps/knotify/eventsrc.
Applications-specific events can also be defined,
and are stored in an application directory named
$KDEDIR/share/apps/app-name /eventsrc.

The program in Figure 5 illustrates using the KNo-
tifyClient class to generate some events with asso-
ciated sounds.

Knotify is very easy to use and configurable by the
user, making it suitable for simple applications such

#include <kapp.h>

#include <knotifyclient.h>

int main(int argc, char **argv) {

KApplication *app =

new KApplication(argc, argv, "Demo");

KNotifyClient::event("startkde", "Starting.");

KNotifyClient::event("fatalerror",

"Fatal error occurred.");

KNotifyClient::event(KNotifyClient::catastrophe,

"Something very bad happenned.");

KNotifyClient::beep("Beep!");

}

Figure 5: KnotifyClient Example (knotify.cpp)

#include <kapp.h>

#include <kaudioplayer.h>

#include <qpushbutton.h>

int main(int argc, char **argv) {

KApplication *app =

new KApplication(argc, argv, "Demo");

QPushButton button("Honk!", 0);

// play a sound file (located in standard location)

KAudioPlayer::play("KDE_Beep_RimShot.wav");

// create a player for a sound file

KAudioPlayer player("KDE_Beep_Honk.wav");

// connect button’s signal to player’s slot

cbutton.connect(&button, SIGNAL(clicked()),

&player, SLOT(play()));

// make button the main widget and start app

app->setMainWidget(&button);

button.show();

return app->exec();

}

Figure 6: KAudioPlayer Example (kaudio-
player.cpp)

as games that only have a requirement to play short
sounds.

5.2 KAudioPlayer

This is a simple class that provides audio file play-
ing. The calls return immediately after sending a
request to the sound server to play the file in the
background. There is no notification when or if the
file has been played. In the current implementa-
tion, it only indirectly communicates with the aRts

sound server, using knotify as a DCOP to MCOP
bridge.

You can play a sound file immediately using the
static play() method. You can also create a KAu-
dioPlayer object, and then connect it’s play slot
to another object’s signal. Both are illustrated in
the code example shown in Figure 6.

The KAudioPlayer class is easy to use and does
not block the application. It is suitable for applica-
tions that only need to play sounds, and the support
for signals and slots makes it easy to use with Qt
widgets. The disadvantages are that it is somewhat
slow, as it uses DCOP, and provides little control or
feedback on sound file playing.

5.3 C API

While KDE and aRts are written in C++, it is rec-
ognized that many applications are still written in
C. The aRts C API was designed to make it easy
to write and port plain C applications to the aRts

sound server. It provides streaming functionality
(sending sample streams to artsd), in either block-
ing or non-blocking modes. For most applications
you simply remove the few system calls that deal
with your audio device and replace them with the
appropriate aRts calls.

Typical usage of the library is as follows:

1. Include the header file artsc.h

2. Initialize the API with arts init()

3. Create a stream with arts play stream()

4. Configure specific parameters with
arts stream set(), if needed

5. Write sampling data to the stream with
arts write()

6. Close the stream with arts close stream()

7. Free the API with arts free()

As a proof of concept Stefan modified the applica-
tions mpg123 and Quake to use aRts using the C
API.

The example program in Figure 7 shows how to use
the C API to play a raw sound file read from stan-
dard input.

#include <stdio.h>

#include <artsc.h>

int main()

{

arts_stream_t stream;

char buffer[8192];

int bytes;

int errorcode;

// initialize

errorcode = arts_init();

// create a stream with the appropriate parameters

stream = arts_play_stream(8000, 8, 1, "demo");

// read sound data from standard input

while((bytes = fread(buffer, 1, 8192, stdin)) > 0)

{

// write it to the stream

errorcode = arts_write(stream, buffer, bytes);

}

// close stream

arts_close_stream(stream);

// free up resources used by library

arts_free();

return 0;

}

Figure 7: aRts C API Example (artsc.c)

In summary, the C API provides basic sound play-
back and recording functionality, the ability to con-
trol real-time parameters, and is straightforward to
use.

5.4 libkmid

Libkmid is the interface for MIDI functions. For
simple applications you use the class KMidSim-
pleAPI. The short example in Figure 8 plays a
MIDI file.

You can do much more with libkmid, but it requires
knowledge of MIDI concepts which are beyond the
scope of what can be covered in this short paper.

5.5 aRts Interfaces

These are the native aRts APIs which are not KDE-
specific. They are all defined in IDL files (which can
be found in $KDEDIR/include/arts), from which
the C++ header files are generated.

#include <iostream>

#include <kapp.h>

#include <libkmid/libkmid.h>

int main(int argc, char **argv) {

KApplication *app =

new KApplication(argc, argv, "Demo");

// initialize the library

int status = kMidInit();

// load the MIDI file (adjust path as needed)

status = kMidLoad("song.mid");

// start playing the file in the background

kMidPlay();

// wait until it finishes

while (kMidIsPlaying())

;

// release resources

kMidDestruct();

}

Figure 8: libkmid Example (libkmid.cpp)

5.5.1 core.idl

This has basic definitions that form the core of the
MCOP functionality, such as the protocol itself, def-
initions of the objects, the trader, and the flow sys-
tem.

5.5.2 artsflow.idl

This file contains the definitions for the flow system
that is used for connecting audio streams, the defini-
tion of Arts::SynthModule which is the base for
any interfaces that have streams, and a few other
useful audio objects.

The example in Figure 10 illustrates connecting to-
gether several modules. The program produces two
sine waves of different frequencies, mixes them to-
gether, scales the result, and sends it to the audio
device. The connection of modules is illustrated in
figure 9.

Note that in order to keep the example sim-
ple, it creates the modules locally and uses the
Synth PLAY module, which writes directly to the
sound hardware. A more typical aRts applica-
tion would use the Synth AMAN PLAY module
which plays through the sound server, and create
the modules in the sound server itself. A slightly
longer example which does this is available in the

697 Hz

Synth_WAV_SIN Synth_WAV_SIN

Synth_ADD

Synth_MUL

Synth_PLAY

Synth_FREQUENCY Synth_FREQUENCY

1209 Hz

Figure 9: Connection of Modules for artsflow1.cpp
Example

file artsflow2.cpp.

5.5.3 kmedia2.idl

This interface defines Arts::PlayObject, which
can play media of various formats. This is the in-
terface to use if you want to implement a sound file
player. It currently supports many formats includ-
ing WAV, MP3, and Ogg Vorbis.

The example program shown in Figure 11 illustrates
using a PlayObject to play the sound file named on
the command line. It also shows some of the capa-
bilities for querying the object during playback. It
would be quite straightforward to extend this into a
simple media player program with support for start-
ing, stopping, pausing and seeking.

5.5.4 soundserver.idl

This defines the interface for the system wide sound
server implemented by artsd. There are cur-
rently three interfaces, representing the incremen-
tal enhancements to the server: SimpleSoundServer,
SoundServer, and SoundServerV2. To provide back-
wards binary compatibility, interfaces are never
changed.

#include <arts/artsflow.h>

#include <arts/artsmodules.h>

#include <arts/connect.h>

using namespace Arts;

int main()

{

Dispatcher dispatcher;

// create objects

Synth_FREQUENCY freq1, freq2;

Synth_WAVE_SIN sin1, sin2;

Synth_MUL mul;

Synth_ADD add;

Synth_PLAY play;

// setup a 697 Hz sine generator

// and connect it to the add

setValue(freq1, "frequency", 697.0);

connect(freq1, "pos", sin1, "pos");

connect(sin1, "outvalue", add, "invalue1");

// setup a 1209 Hz sine generator

// and connect it to the add

setValue(freq2, "frequency", 1209.0);

connect(freq2, "pos", sin2, "pos");

connect(sin2, "outvalue", add, "invalue2");

// scale by 0.5 to prevent clipping

connect(add, "outvalue", mul, "invalue1");

setValue(mul, "invalue2", 0.5);

// connect the output to the play module

connect(mul, "outvalue", play, "invalue_left");

connect(mul, "outvalue", play, "invalue_right");

// start all modules

freq1.start(); freq2.start();

sin1.start(); sin2.start();

mul.start(); add.start(); play.start();

dispatcher.run();

}

Figure 10: artsflow Example (artsflow1.cpp)

#include <arts/artsflow.h>

#include <arts/kmedia2.h>

#include <arts/connect.h>

using namespace Arts;

using namespace std;

int main(int argc, char **argv)

{

Dispatcher d;

// pass a sound file (e.g. mp3) as first argument

string filename = argv[1];

// get a reference to the global PlayObject

// factory

PlayObjectFactory factory =

Reference("global:Arts_PlayObjectFactory");

// Ask factory to create play object

// for this file

PlayObject playObject =

factory.createPlayObject(filename);

// start playing the file

playObject.play();

// wait until play object finishes playing

do

{

sleep(1);

} while (playObject.state() == posPlaying);

}

Figure 11: KMedia2 Example (kmedia2.cpp)

#include <arts/soundserver.h>

#include <arts/artsmodules.h>

using namespace Arts;

int main()

{

Dispatcher dispatcher;

// get a reference to the server

SimpleSoundServer server =

Reference("global:Arts_SoundServer");

// play a sound file, note that

// we need the full path

char dir[PATH_MAX];

getcwd(dir, PATH_MAX);

server.play((string)dir + "/" + "song.wav");

// create a Reverb effect

Synth_FREEVERB freeverb;

freeverb = DynamicCast(

server.createObject("Arts::Synth_FREEVERB"));

freeverb.start();

// insert effect into the output stack

StereoEffectStack effectstack =

server.outstack();

long id = effectstack.insertBottom(freeverb,

"Freeverb");

// let it play for a while more

sleep(10);

// remove the effect

effectstack.remove(id);

}

Figure 12: Sound Server Example (soundserver.cpp)

The example program in Figure 12 shows some of
the sound server features. It illustrates playing a
sound file, and inserting an effect into the audio out-
put stream.

5.5.5 artsbuilder.idl

This module defines the basic flow graph function-
ality, that is, combining simpler objects to cre-
ate more complex ones. It defines the basic inter-
faces Arts::StructureDesc, Arts::ModuleDesc
and Arts::PortDesc which contain descriptions of
a structure, module, and port, respectively.

5.5.6 artsmidi.idl

This module defines basic MIDI functions such as
objects that produce MIDI events, the definition of
a MIDI event, and the MIDI Manager. This is still
somewhat experimental.

5.5.7 artsmodules.idl

This file defines the various filters, oscillators, ef-
fects, delays, etc. that can be used for audio sig-
nal processing and for building complex instruments
and effects.

5.5.8 artsgui.idl

This contains the interfaces for visual objects. At
the current time it is still being developed and is
subject to change.

5.6 Video

Arhitecturally aRTs can support other streaming
media such as video, but this has not yet been im-
plemented. The KDE video player aktion is based
on the program xanim. It does not provide a video
API although it can be embedded into other appli-
cations using the KDE KPart technology.

6 Porting Applications to KDE

If you have a non-aRts multimedia application, how
can you port it to KDE?

A possible solution is to suspend the sound server
and then run the application normally. This is not
really a solution at all, since if the sound server is
busy it cannot be suspended, only killed. Other
aRts applications will not be able to use the sound
hardware once your application has opened it.

There is a utility called artsdsp, included with
aRts, which allows most legacy sound applications
that talk to the audio devices directly to work prop-
erly under aRts. Using the dynamic linker preload
mechanism it intercepts system calls to the audio
device and redirects them as aRts calls. This works
for most applications. Applications written to use
the GNOME Enlightenment Sound Daemon (esd)
will also work in most cases by running esd itself
under artsdsp.

This makes a good short term solution to porting
existing applications to KDE. However, it does not
allow the application to directly take advantage of
all of the power of aRts, such as using modules
and multimedia streams other than digital audio. If
the application goes beyond simple playing of sound
files, it usually makes sense to add native support
for aRts to the application.

Using aRts also means that application does not
have to do as much work — it can leverage the
functions in aRts to handle issues like codecs for
different media formats and control of the sound
hardware.

When using aRts, you have a number of different
APIs to choose from. The decision of which to use
depends on a number of factors, including what type
of streaming media is used (sound, MIDI, CD audio,
etc.), the API features required, and whether it is
written in C++. In most cases the choice should be
reasonably obvious based on the required features.

For cross-platform portability, applications that
need to run on environments other than KDE can-
not rely on aRts being present. Using the plug-in
paradigm is a good way to support different multi-
media environments. Making the plug-in API open
and documented (especially for closed source appli-
cations) also has the advantage of allowing someone

other than the application developer to implement
an aRts plug-in.

7 Current Status

The core aRts functionality is considered quite sta-
ble and all KDE applications use aRts for sound.
Some of the more relevant programs include:

� noatun media player

� artsbuilder graphical module builder

� aktion video player

� kmid and kmidi MIDI players

� kmix mixer

� kscd CD player

� and games such as kpoker and ktuberling

Applications that use KNotifyClient (like
konsole) can play a sound file for ringing the
terminal bell.

Some KDE applications that are not yet included
in the KDE release (e.g. in kdenonbeta) also sup-
port aRts, including the brahms musical score ed-
itor, kaboodle embedded player, and kwave wave
file editor.

Many non-KDE applications are known to work
with aRts including the xmms MP3 player
(with aRts plug-in) and the Real Networks Re-
alPlayer�8.0 (with artsdsp; native aRts support
is being considered).

8 Future plans

These are some of the enhancements and areas of
new development planned for aRts:

� support for multiple sound servers on one ma-
chine (like multiple X displays)

� fully threaded aRts

� support for other audio drivers (e.g. SDL, NAS,
ESD)

� support for other than 2 sound channels

� enhancements to artsshell (e.g. make it a
true shell language)

� move to CSL (a new common sound layer in-
tended to be compatible between GNOME and
KDE)

� finish implementing support for GUI objects

� support for LADSPA modules (Linux Audio
Developer’s Simple Plugin API)

� enhancements to artsbuilder

� performance optimization

� documentation (manual and kdoc source com-
ments)

� gateway between MCOP and DCOP, CORBA,
XMLRPC

� C language binding, based on glib, with
mcopidl code generation for C

� support for video streams and codecs

9 Summary and Conclusions

As I see it there are some key factors that have chal-
lenged the development of multimedia on Linux:

9.0.1 Lack of hardware device drivers

This is becoming less of an issue now that most
hardware vendors are recognizing Linux, especially
video cards, but it remains an issue for some leading
edge hardware such as the latest sound cards and
the more esoteric devices like MP3 players. This is
outside the scope of this paper.

9.0.2 Proprietary codecs/file formats

Examples in this category include Apple Quick-
Time�, RealAudio�, and various Microsoft sound
and video file formats. In some cases the issues are

not so much technical as legal, such as the intellec-
tual property and patent issues with GIF files, MP3
encoders and DVD players. This also is outside the
scope of this paper, but one approach to address
this is to encourage vendors to open up their stan-
dards, and educate users about the implications of
proprietary versus open formats. Users can be given
an alternate choice of unencumbered replacements
like PNG and Ogg Vorbis.

9.0.3 Lack of standardized libraries

There are few libraries and toolkits for multimedia,
and among those there is little agreement on which
ones to use. This results in applications which use
different and sometimes incompatible libraries, or in
many cases the applications have to implement all
of the multimedia functionality from the ground up
themselves. KDE addresses this with a standardized
set of libraries.

9.0.4 Access to shared resources

The best example here is for sound devices. Only
one application can use the sound device at one
time. A common sound library or sound server can
solve this, but all applications have to agree to use
it.

The artsd sound server addresses this by providing
a sound server as part of the desktop architecture. It
also holds the potential for providing compatibility
with the esd sound server in the future, allowing
both KDE and GNOME applications to coexist (in
fact you can do that today in a less elegant fashion
by running esd under the artsdsp utility).

9.0.5 Rapid pace of change

New file formats such as Ogg Vorbis have the poten-
tial to become de facto standards in a short period
of time. Applications that don’t keep up can rapidly
become obsolete. A way of addressing this is to pro-
vide a plug-in architecture to allow new codecs to
be developed independently of the application. The
traditional approach is to support plug-ins in the
applications themselves. KDE take this further by
providing the plug-ins in the multimedia framework.

In addition, the nature of open source development
is such that it encourages a rapid pace of develop-
ment with quick feedback from users.

9.0.6 Lack of high quality applications

Most of the above issues have acted to limit the
number of high quality applications. It is hoped that
the new KDE multimedia architecture will make
it easier for developers to create killer applications
that will put Linux and KDE in the forefront for
desktop applications.

10 References

1. The aRts Handbook (http://www.arts-
project.org/doc/handbook)

Included with KDE, this tries to be the defini-
tive guide for developers. Some sections are
still incomplete.

2. KDE 2.0 Development, chapter 14.

This published book has a chapter on multime-
dia written by Stefan with a lot of good mate-
rial. As well as in print, it is available on-line
at http://www.andamooka.org where it is
annotated with comments and updates.

3. http://multimedia.kde.org

This is the home page for KDE multimedia.

4. http://www.arts-project.org

This is the home page for the aRts project.

5. http://sound.condorow.net

This is a great site for Linux multimedia appli-
cations.

In the KDE CVS source code repository the core
functions of aRts are in kdelibs. Additional li-
braries and applications are in kdemultimedia.
Good API documentation is generated directly from
the source comments using the KDE documentation
tools.

Most KDE multimedia and aRts development dis-
cussions are held on the KDE multimedia and aRts

mailing lists. See The aRts Handbook for details.
Occasional meetings are also held on IRC.

This presentation paper, slides for the talk,
and expanded versions of the example code
listings will be available from my web site
at http://www.pobox.com/˜tranter and at
http://www.ottawalinuxsymposium.org

11 Acknowledgements

Some of the material in this paper was adapted from
The aRts Handbook, which was written primarily
by Stefan Westerfeld and myself. Some of the ex-
amples are based on sample programs included with
aRts.

12 About The Author

Jeff Tranter has been using Linux since 1992. He
is the author of the Linux Sound and CD-ROM
HOWTOs and the O’Reilly book Linux Multime-
dia Guide. He has worked in a number of diverse
areas of Linux, most recently on the KDE desktop
environment focusing on multimedia.

