
Making SOAP with Soup

Alex Graveley
Ximian Inc.

alex@ximian.com, http://www.ximian.com

Abstract

In this paper we explore existing remote procedure
call mechanisms and present an alternative more
suited to Internet transactions. This mechanism,
Simple Object Access Protocol (SOAP), uses XML
for data and type encoding and is transferred over
protocols such as HTTP and SMTP. An implemen-
tation of SOAP written in C, named Soup, will be
discussed in detail.

Soup is designed to be fully asyncronous, and pro-
vides skeleton code generation for use with SOAP
clients and servers. WSDL, a SOAP interface de-
scription language is covered as well as future SOAP
developments such as object discovery and integra-
tion between existing RPC mechanisms.

1 Introduction

Programmatic use of remote computing resources
has become a common paradigm in enterprise level
application development. Since their initial adop-
tion as viable systems, numerous incarnations of so-
called Remote Procedure Call (RPC) mechanisms
have been developed.

Each of these systems exhibit distinguishing fea-
tures which determine their best usage scenarios.
Wire encoding, data type capabilities, object sys-
tem, speed, active deployment, and initial learn-
ing curve all play important roles when choosing
the correct RPC for a given application. However,
many of these existing systems are designed for use
in strongly controlled environments, such as LANs
or extranets. This leads to limited client accessibil-
ity in highly diverse Internet transactions. In these
cases, restrictions like unstable connections or strict
firewall setups can make access by certain clients
nearly impossible.

Simple Object Access Protocol (SOAP) is a re-
cently standardized specification for an RPC sys-
tem which attempts to solve this problem. Based
strongly around existing Internet standards, SOAP
uses transport protocols like HTTP or SMTP for
communication between client and server, and XML
for on the wire data encoding.

This paper discusses the design goals and proto-
col internals of the SOAP specification, as well as
the XML Schema-based type system used by SOAP,
and the service description language used to define
SOAP interfaces. We also introduce a SOAP imple-
mentation with C language bindings named Soup.

2 SOAP Design Goals

SOAP is designed to be simple, leveraging exist-
ing standards where possible and, building upon a
strong extensible XML base. The simplicity of the
client/server protocol and the strength of the type
system allow it to cover a wide range of capabilities
while keeping the specification clean.

Transport Agnostic

The specification does not specify which trans-
port protocols can be used to carry SOAP mes-
sages. Instead it defines a means by which
structured data can be encapsulated generically
in existing protocols. Standardization on how
best to encapsulate SOAP in other protocols is
left to outside efforts.

Object System Agnostic

The specification does not specify any sort of
object activation, discovery, reference counting,



or life cycle management. This allows for sim-
plest case transactions to occur with a mini-
mum of programmer overhead, while also al-
lowing complex systems to be supported.

Language Agnostic

The specification does not define any language
bindings. This allows SOAP messages to be
constructed in whichever way is most suitable
for a given programming environment and un-
derlying transport protocol. In fact, SOAP
implementations for many common languages
such as C, C++, Visual Basic, Perl, and
Python already exist.

Internet Friendly

In practice, SOAP works well through fire-
walls, with unreliable connections, is easily en-
cryptable, and easy to debug and trace, all of
which make it exceptional for use in Internet
situations. In order to function well in this
evironment, SOAP avoids specifying features
like server to client callbacks, or TCP/IP port
schemes, unlike several other RPC mechanisms
which make heavy use of them.

SOAP is actually divergent from most of the newer
RPC mechanisms, holding simplicity and extensi-
bility as paramount. In fact, SOAP abstains from
many common RPC idioms which would limit its
extensibility and possible uses. This leaves it in
the unique position to allow bridging between other
RPC mechanisms.

Already SOAP has been used to allow communi-
cation with the Microsoft COM/DCOM compo-
nent system, and work is under way to specify a
CORBA/SOAP bridge.

3 Transport Encapsulation

Data is tranferred between client and server using
SOAP messages, which are simply structured XML
payloads. A client request message is composed of
a server-unique object locator, the SOAP method

name to be invoked of the object identified, and
method parameter data. A server response message
encodes return result data or optionally a SOAP
fault used to signal some error condition back to
the requesting client. Both client and server mes-
sages may contain arbitrary SOAP headers, which
are out-of-band data for processing by the destina-
tion (not to be confused with the headers used by
many transport protocols).

Locating a specific object on which to invoke a
SOAP method, and the means to do so is left solely
to the transfer protocol implementation. In the case
of HTTP transport, a SOAPAction HTTP header
must be present in order to identify the resource
being requested. This header will contain an arbi-
trary URI. In the case of SMTP the mail address
of the recipient will be used to identify the message
processor. The SOAP specification itself does not
describe how this information is originally acquired,
but leaves it up to external mechanisms such as a
Service Description Language, explained later.

Request parameters and response data are encoded
as a child element of a Body XML element. This
Body element is a direct child of the message’s top-
level Envelope element. SOAP headers are trans-
ferred inside a Header element also a direct child of
the Envelope element.

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<session-id value=’b4f541609c844180’/>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<GetCurrentTemperature>

<city>Boston</city>

<country>US</country>

</GetCurrentTemperature>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 1: Simple SOAP request message

Figure 1 shows a sample SOAP request message
body. This message body would remain the same
were is being delivered using HTTP, SMTP, or any
other transport protocol. The session-id element
is a SOAP header. The GetCurrentTemperature
element identifies the SOAP method to be invoked
upon the destination object. The city and country
elements are method parameters.

<SOAP-ENV:Envelope>



<SOAP-ENV:Body>

<GetCurrentTemperatureResult>

<temperature units=’celsius’>

15

</temperature>

</GetCurrentTemperatureResult>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 2: Simple SOAP response message

Figure 2 shows a possible SOAP response
to the request issued in Figure 1. The
GetCurrentTemperatureResult element
marks that this message is a response to a
GetCurrentTemperature method invocation, and
the temperature element is the returned value.

Work on standardizing how SOAP is to be encapsu-
lated inside other transport protocols is under way.
Currently HTTP and SMTP transfer is standard-
ized, and the DIME protocol which allows for SOAP
messages tranferred directly over TCP or UDP is
under development.

4 XML Schema Type System

XML Schema is the recently finalized system which
replaces DTD as the mechanism for validation and
description of an XML document. It supports many
more features than did DTD, and is defined using
structured XML versus DTD’s element-based sys-
tem. SOAP uses XML Schema as its type system
for datatype definition, and incoming XML docu-
ment validation.

Schema allows common concepts like basic types,
lists, unions, and complex types which are a collec-
tion of basic types or other complex types. In ad-
dition, schema allows new types to be derived from
other types in highly extensible ways.

4.1 Simple Types

Schema’s set of basic types is quite large. It in-
cludes strings, integers, bytes, floating point num-
bers, dates, time durations, binary data encoded as
Base-64 or hex, and URIs, to name a few. There
are also variations to support for example only a
positive integer, or an unsigned byte.

Derivation from simple types allows restrictions to
be imposed on instances of the new type. Instance
values in an XML document must comply with all
restrictions in order to be considered valid XML.
The basic set of these restrictions (called facets) al-
low you to do things like limit the length of strings,
or force them to conform to a regular expression pat-
tern, set arbitrary upper or lower bounds on numeric
values, limit their number of integral or fractional
digits, and explicitly enumerate allowed values for
an instance.

<simpleType name=’temperatureUnits’>

<restriction base=’xsd:string’>

<enumeration value=’celsius’/>

<enumeration value=’fahrenheit’/>

<enumeration value=’kelvin’/>

</restriction>

</simpleType>

Figure 3: temperatureUnits simple type definition

Figure 3 defines the simple type temperatureUnits.
temperatureUnits is derived from the base type
string, and imposes a restriction on the allowed
string values using an enumeration. This means
that any instace where the units attribute appears,
must have a value of “celsius”, “fahrenheit”, or
“kelvin”.

4.2 Attributes

Attributes are a common XML idiom. They are
name/value parameters which may appear in a com-
plex type element. In Schema, attributes can be
specified explicitly, and given a simple type which
the attribute value must conform to. Various as-
pects of the attribute can also be specified, such as
default value, or whether its appearance in an in-
stance is mandatory.

<attribute

name=’units’

type=’temperatureUnits’

use=’required’/>

Figure 4: units attribute definition

Figure 4 defines the attribute units used in Fig-
ure 2. The name attribute of the definition identi-
fies how this created attribute will be named in an



XML instance element. The type attribute tells
us that instances of this attribute will be of the
temperatureUnits type (defined in Figure 3), and
hence must be one of the explicit values allowed for
that type. Finally, the use attribute says that com-
plex type definitions which make use of the units
attribute will always have this attribute present in
instances.

Schema also has the concept of an attribute group,
which is a named group of attributes that can be
used in more than one type to assure they all share
a common set of attributes.

4.3 Complex Types

Complex types are constructed by either listing the
simple or complex type member elements it is com-
posed of, or by restricting or extending an existing
simple type or complex type.

When restricting a simple type, we are allowed to
add additional facets to the base type, or to add
element attributes which may appear in an instance
document. When extending a basic type, we are
only allowed to add attributes.

When restricting an existing complex type, you may
add elements, modify existing elements, add at-
tributes, and modify existing attributes. When ex-
tending a complex type you may only add elements
and attributes. Use of extension is very much like
sub-classing the base complex type, to use a com-
mon programming term.

When defining the elements of a complex type, there
are a variety of options for how they should be
represented in an XML instance of the type. You
may have all elements required (much like a struc-
ture in the programming world), a single choice of
the elements (much like a union), or a sequence
of the listed elements, any of which may be de-
fined as mandatory or optional. These contained
elements may also have a maximum and minimum
occurance count, allowing more than one to appear
in a give instance. These element groupings can
also be chained and nested, to allow very complex
sequences of data where necessary.

<complexType name=’temperatureType’>

<simpleContent>

<extension base=’xsd:decimal’/>

<attribute ref=’units’ use=’required’/>

</extension>

</simpleContent>

</complexType>

Figure 5: temperatureType complex type
definition

Figure 5 defines a new complex type named
temperatureType which is used as the type
for the temperature element in Figure 2.
temperatureType uses extension to sub-class the
decimal simple type. It also adds a new attribute
which references the attribute we created in Fig-
ure 4. The use attribute of this new attribute
is set to “required” which means that the units
attribute must be present in all instances of a
temperatureType.

4.4 Elements

Elements are required to differentiate between sim-
ple and complex type definitions which are meant
only for internal use, for example an abstract base
class, and those which are allowed to appear in an
XML instance document conforming to the schema
specified. It also binds instance element names to a
type definition.

<element name=’city’ type=’xsd:string’/>

<element name=’country’ type=’xsd:string’/>

<element

name=’temperature’

type=’temperatureType’/>

Figure 6: Example element definitions

Figure 6 defines the elements city, state, and
temperature which are used in Figures 1 and 2.
The city and state elements are bound to the
Schema string type, as no other specialization is
needed. The temperature element is bound to the
temperatureType complex type definition we cre-
ated in Figure 5.



5 Web Services Description Lan-
guage

Web Services Description Language (WSDL) is a
corollary to an Interface Definition Language (IDL)
used by other RPC mechanisms such as CORBA,
COM, and Sun RPC. WSDL identifies the meth-
ods and their parameters available to be called at
a given URL. The destination URL identifies and
defines a so-called “web service”, which represents
a set of methods with a common association, some-
what like a class in object-oriented programming.
By using a destination URL WSDL also describes
the transport to be used when communicated with
a given service. Keeping this transport to SOAP
method mapping contained a WSDL description al-
lows programmers to remain ignorant of the under-
lying transport mechanism being used.

<definitions

name="Thermometer"

targetNamespace=

"http://ximian.com/temp.wsdl"

xmlns:temp=

"http://ximian.com/temp.xsd"

xmlns:soap=

"http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:wsdl=

"http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="GetCurrentTemperatureInput">

<part

name="city"

element="temp:city"/>

<part

name="country"

element="temp:country"/>

</message>

<message name="GetCurrentTemperatureOutput">

<part

name="temperature"

element="temp:temperature"/>

</message>

<portType name="TemperaturePortType">

<operation name="GetCurrentTemperature">

<input message=

"GetCurrentTemperatureInput"/>

<output message=

"GetCurrentTemperatureOutput"/>

</operation>

</portType>

<binding

name="TemperatureBinding"

type="TemperaturePortType">

<soap:binding

style="document"

transport=

"http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetCurrentTemperature">

<soap:operation

soapAction=

"http://ximian.com/temp"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="TemperatureService">

<port

name="TemperaturePortType"

binding="TemperatureBinding">

<soap:address

location="http://ximian.com/temp"/>

</port>

</service>

</definitions>

Figure 7: Example WSDL definition

Figure 7 is an example WSDL definition of the
SOAP messages presented in Figures 1 and 2, which
uses the type information specified in Figures 3, 4,
5, and 6 to map types to SOAP method parame-
ters and return values. It also maps the service to
the URL “http://ximian.com/temp”, which tells us
that this service uses an HTTP transfer protocol.
Based on the combined information in the WSDL
and XML Schema definitions, a WSDL compiler can
generate programming language declarations that
allow the service described to me called and the re-
sults manipulated programmatically.

6 Soup

Soup is a SOAP (Simple Object Access Protocol)
implementation for the C programming language.
It provides an queued asynchronous callback-based
mechanism for sending and servicing SOAP re-
quests, and a WSDL (Web Service Definition Lan-
guage) to C compiler which generates client stubs
and server skeletons for easily calling and imple-



menting SOAP methods.

It uses the Glib main loop and is designed to
work well with GTK+ applications. This enables
GNOME applications to access SOAP servers on the
network in an asynchronous fashion (a synchronous
operation mode is also supported for those who want
it).

6.1 Current Features

• WSDL 1.1 Compiler

• Full HTTP 1.1 transport engine

• SSL support for secure SOAP communication

• HTTP digest authentication support

• Connection cache

• Standalone HTTP server and Apache module
for serving SOAP messages

6.2 Future Development

• POP/SMTP tranfer engine

• DIME TCP/UDP transfer engine

• Disco object discovery support

• SOAP Routing Protocol support

• CORBA IDL to WSDL Compiler

• Microsoft COM over SOAP integration

• CORBA over SOAP testbed

• GTK+ Object and Bonobo integration

7 Acknowledgments

The author would like to thank those contribu-
tors and developers who made this project possible.
Namely Daniel Veillard for his excellant XML li-
brary, J.P. Rosevear, Rodrigo Moya, and especially
Dick Porter for his extensive work on the WSDL
compiler and runtime implementation.

Also, a special thanks to the architects of the vari-
ous XML, SOAP, and WSDL specifications, includ-
ing members of World Wide Web Consortium and

employees of Microsoft Corporation, Sun Inc., IBM
Inc., and DevelopMentor.com.

8 Availability

The Soup runtime is available under the LGPL;
the WSDL compiler under the GPL. Visit
http://www.gnu.org for more details.

Download the latest tarball from:
ftp://ftp.gnome.org/pub/GNOME
/unstable/sources/soup

Or from GNOME CVS, in the "soup" module. Visit
http://www.gnome.org/cvs for more information.

Also, please feel free to join to the Soup dis-
cussion list. To subscribe, send mail with
the word Subscribe in the message body to
soup-list-request@ximian.com.

9 Online Resources

To learn more about SOAP, XML Schema, or
WSDL visit these web sites:

• XML Schema Home
http://www.w3.org/XML/Schema

• SOAP 1.1 Specification
http://www.w3.org/TR/SOAP

• WSDL 1.1 Specification
http://msdn.microsoft.com/xml/general/wsdl.asp

• Developmentor SOAP Home
http://www.develop.com/soap/default.htm

• Microsoft SOAP Home
http://msdn.microsoft.com/soap/default.asp

• Gnome-XML Library
http://xmlsoft.org/xml.html


