
A Nonlinear Model-Based Control realized with an

Open Framework for Educational Purposes

Klaus Weichinger

BIOE Open Hardware Automation System Developer
3300 Greinsfurth, Austria

snaky.1@gmx.at - http://bioe.sourceforge.net

Abstract

Today, nonlinear model-based control methods are an essential part in different control applications.
To provide a complete open framework for educational purposes this contribution extends common open
source software (Scilab/Scicos, Maxima and rt-preempt Linux real-time system) with a low-cost do-it-
yourself open hardware interface and a web-based monitoring system embedded into Scicos blocks.

The simple concept of the open hardware interface called Bioe (Basic Input Output Elements) allows
the real-time application to interact with general analog and digital signals as well as to more complex
devices (e.g. resistive touch panels, RC servos, I2C acceleration sensors). Furthermore, a prototype of a
web-based monitoring system using Ajax is treated. It consists of a Http web server embedded into a
Scicos block so that existing Scicos code generation packages for rt-preempt Linux can be used without
modifications.

To demonstrate the applicability and usability of the proposed framework a nonlinear model-based
control law for a mechatronic multi-input multi-output system is derived with the concept of input/output
linearization and realized with the proposed open framework.

1 Introduction

Rapid Control Prototyping (RCP) is still asso-
ciated with cost-intensive hardware and software in-
vestments. Such proprietary RPC frameworks are
used in industrial applications because they are well
known from education.

Mercifully, the real-time capability of the Linux
kernel due to patches like Rtai [1] or rt-preempt [2]
has highly increased and the usability of cost-saving
open source software (OSS) for computer-aided con-
trol system design (CACSD) has improved within
the last years. A fully usable RCP framework for in-
dustrial and educational applications is provided by
Rtai-Lab which consists of a Linux distribution with
a Rtai patched kernel, Scilab/Scicos [3] or Sci-

cosLab [4] and the Comedi drivers collection [5] for
a variety of data acquisition boards. Furthermore,
the software xRtaiLab allows to scope and record
signals and to edit system parameters. There also
exist other real-time Linux projects like RTLinux [6]

and Xenomai [7], but the comparison of real-time
approaches is not the topic of this paper.

This contribution picks up two aspects that
should complete the existing OSS [2, 8, 4, 9] to a cost-
and time-saving open RCP framework for rt-preempt
Linux real-time systems. The first aspect is discussed
in section 2 and concerns the hardware to interface a
RCP system with the target system. The presented
solution is a low-cost and do-it-yourself system called
Basic Input Output Elements (Bioe, [10]) with a
simple but very flexible interface. The second aspect
treats a web-based monitoring approach that imple-
ments a Http web server within a Scicos block and
uses an Ajax web-application to scope signals and
edit parameters. The web-based concept, first re-
sults of the prototype and further details are topic of
section 3.

In section 4 the proposed open RCP framework
is used to implement a nonlinear model-based con-
trol law for a mechatronic system. The multiple-

1

input multiple-output (MIMO) mechatronic system
consists of the well known mass-spring system with
viscous friction that is actuated with a double-acting
hydraulic piston (DAP). Beside the position control
of the mass the sum-pressure of the DAP has to be
stabilized at a constant value. The method of in-
put/output exact linearization [11, 12] is used to de-
rive the control law and a hardware-in-loop (HIL)
simulation is used to test the control law and to
demonstrate the usage of the Bioe system and the
web-based monitoring system.

Usability and reliability of an open RCP frame-
work are basic requirements so that open hard- and
software can be used for educational purposes, a
very important precondition to introduce open RCP
frameworks into industrial applications.

2 Open Hardware - BIOE

The Bioe system was developed within a
diploma thesis [13] and is a simple but effective piece
of hardware to interface a PC with signals of a phys-
ical system. It consists of small modules that are
connected parallel with the Bioe bus cable to the
parallel port interface (Line Print Terminal, LPT) of
the PC as shown in figure 1.

FIGURE 1: A Bioe mock-up

Each module can be addressed with a 4bit dip-switch
and so up to 16 Bioe modules can be connected to
the bus cable. An adapter board is used for signal
amplification and to protect the LPT against dam-
ages. This interface is used for communication be-
cause of its real-time performance and simplicity. In
addition, the LPT interface is still available on some
embedded and desktop systems or can be retrofitted
with e.g. PCI Express cards.

A Bioe module is equipped with an AT-Mega16
microprocessor. This 8bit microprocessor contains

the functionality to deal with different types of sig-
nals and to provide the information via the Bioe bus
by the use of 16 end-points (EP0, EP1, . . . , EP15).
Each end-point consists of a 16bit receive and 16bit
transmit register (RXadr,ep and TXadr,ep with the
Bioe address adr ∈ {0, . . . , 15} and the end-point
number ep ∈ {0, . . . , 15}). These end-points are the
common interface between the real-time application
and the physical signal. The end-points are accessed
with transactions. During a transaction a 16bit value
is written from the PC to the register RXadr,ep and
is read from the Bioe module register TXadr,ep back
to the PC simultaneous.

FIGURE 2: UML sequence diagram from
the Bioe module firmware

In addition, the end-points EP0 and EP1 are
used to activate the required interface type with the
device type number (DTN). This approach reduces
the software effort for the real-time task and so only
two Scicos blocks are required to use the whole
functionality of Bioe (see section 2.2). Furthermore,
each Bioe module contains all interface types that

2

are realized for Bioe and each interface type can
be activated with an unique DTN. After the initial-
ization of the interface the corresponding interface
function is processed and the informations are con-
verted and exchanged between the end-points and
the hardware interface as illustrated in figure 2.

The table 1 gives an overview of the provided
interfaces:

DTN Interface Type Description

001 16 digital outputs

002 16 digital inputs

003 8 digital inputs, 8 digital outputs

050 two 10bit PWM, four 10bit ADC

090 square signal generator

091 square signal frequency measurement

100 incremental decoder

101 incremental decoder with HCTL2022

105 16x2 LCD driver, four push buttons

106 ADC, PWM, RC-Servomotor and
incremental decoder

107 UART interface

120 RC5 infrared receiver

127 4 wire resistive touch interface

128 WII-Nunchuck interface (I2C)

129 WII-Remote IR camera interface (I2C)

230 electrical network simulator

231 torsional oscillator simulator

250 cycle time measurement

TABLE 1: List of available interface types

If a new interface type is required the implementa-
tion is done in the Bioe module software. The con-
cept to keep hardware related functionality on the
Bioe modules avoids any modification of the Bioe

software on the PC and reduces the efforts to keep
the PC software updated. Hence, if the Bioe com-
munication via the end-points is ensured all available
DTN interfaces can be used. In the following sec-
tions further topics concerning the Bioe system are
discussed.

2.1 BIOE Bus and Performance

The Bioe bus is a 14 pole flat cable (see table
2) that connects the modules with the LPT adapter
board. This bus is a compromise of low-cost cables

and connectors, communication speed and the micro-
processor performance. For the communication with
transactions a 4 bit parallel bus is used and each
transaction contains the device address, the end-
point number, the register values and a very simple
check-sum to detect transmission errors.

PIN Name Description

1 Vcc +5V supply
2 GND ground supply
3 CS Chip-Select (by Master)
4 CLK Clock (by Master)
5 DO0 Bit 0 Master→Slave
6 DO1 Bit 1 Master→Slave
7 DO2 Bit 2 Master→Slave
8 DO3 Bit 3 Master→Slave
9 DI0 Bit 0 Slave→Master
10 DI1 Bit 1 Slave→Master
11 DI2 Bit 2 Slave→Master
12 DI3 Bit 3 Slave→Master
13 NC not in use
14 NC not in use

TABLE 2: Description of the 14 pole Bioe

bus flat cable

Performance measurements done with different
PC’s return a transaction time Ttrans between 25µs
and 50µs (time where CS is high; see figure 3). This
parameter depends on the PC’s hardware, especially
the type of parallel port (parallel port directly on the
motherboard, a PCIe extension module, ...).

CS

CLK

DO0-3 ADR EP O15:12 O11:8 O7:4 O3:0 CHECKSUM

DI0-3 I15:12 I11:8 I7:4 I3:0 CHECKSUM

FIGURE 3: Timing-Diagram of a Bioe

transaction (O is the value written to
RXadr,ep, I is the value read from TXadr,ep)

The following example demonstrates the deter-
mination of the smallest possible sample time of a
control realized with Bioe.

Example 1 A PID control of a system with one in-
put ni = 1 and one output no = 1 should be realized
with Bioe. This fictive example illustrates how to
determine the smallest sample time for the control
task. For discrete time systems it is assumed that the
time delay Tio between reading the inputs and setting
the outputs is zero. Nevertheless, due to finite cal-
culation speed there is a delay. If a sample time Ts

is used so that the relation Tio ≤ 0.1Ts is ensured

3

then the effects of the timing error can be neglected.
In this example a measurement of the Bioe bus re-
sulted in Ttrans = 30µs.

Ts = 10Ttrans (ni + no) (1)

The equation (1) delivers the minimum sample time
of Ts = 0.6ms for this PID control example.

2.2 Toolchain

The Bioe toolchain consists of a set of Scicos

blocks, a command-line tool and a tool with a graph-
ical user interface. A CLisp API is also available.
This toolchain uses the Bioe C library which pro-
vides the required communication functions and con-
tains the platform abstraction layer.

For the development and testing of Bioe mod-
ules and new interface functions the command-
line tool bioedude and the graphical user interface
bioegui (figure 4) can be used to configure the mod-
ules and to access the end-points directly. These
tools are also very useful to test sensors and actuators
of a new mock-up. The toolchain can be compiled
and used on WIN32 and Linux based platforms.

FIGURE 4: Screenshot of bioegui (uses
FLTK, a cross-platform C++ GUI toolkit)

Only two Scicos blocks (figure 5 are required
to include the Bioe system into a Scicos model.
The first block bioe dev does not have inputs and
outputs and it initializes the interface type of a Bioe

module. The second block bioe ep provides the end-
point access. This block can be configured so that it
reads or writes an end-point triggered by an external
event.

[888,1,0,9,0]
ADR=2 DTN=50
System IO 2

[888,1,0,9,0]
ADR=2 EP2
QA

FIGURE 5: Scicos blocks (left side: de-
vice block; right side: end-point block)

To configure the parallel port the Bioe API
requires the base-address of the parallel port (e.g.
888dec), the channel number (e.g. 1) to define the
chip-select number, the speed-parameter (e.g. 0)
to trim the communication speed and the pause-
parameter (e.g. 9) to avoid CPU stress of the Bioe

module in consequence of a permanent Bioe bus
communication. Optionally, a fifth parameter is used
to define a setting number that loads the port set-
tings from the file bioesettings.conf if available.
This feature will be required if a compiled Bioe ap-
plication has to be adapted to a different hardware
platform (e.g. an other parallel port base-address).

2.3 An Example Interface

FIGURE 6: Illustration of a complex Bioe

interface

All interfaces are described similar to DTN106 illus-
trated in figure 6. The concept of Bioe allows such
simple documentation so that the principle of What
You See Is What You Get (WYSIWYG) fits very
well.

3 Web-Based Monitoring

This section presents the prototype of a web-
based monitoring system for rt-preempt Linux real-
time applications created with Scicos. The idea was

4

to implement a Http server within the real-time ap-
plication, to start the server as non-real-time thread
and to exchange signals and parameters between the
real-time application and the Http server (see sec-
tion 3.1). A REST-style architecture [14] is used for
Ajax based communication in which the signals are
exchanged as XML formated byte stream. A web
application or an other kind of application uses this
interface to establish a connection with the real-time
application to scope signals and to modify parame-
ters. For the client side communication and a basic
web-based monitoring system see section 3.2.

3.1 Server Side Component

The Rtxmlserver illustrated in figure 7 was re-
alized within one Scicos block. During the initial-
ization of this Scicos block a new POSIX thread is
created (see listing 1).

Control-Thread
Real-Time

BIOE bus

FIFO based
Signal

Manager

Server-Thread
Non-Real-Time

HTTP

Server

RTXML-
Request
Handler

File-System

HTTP-Request

Rtxmlserver Create Thread

Process ServerData

Record

XML

Stream

FIGURE 7: Simplified Structure Diagram
of the Rtxmlserver

This thread processes the data-exchange between
a remote client monitoring system and the real-time
task. For the communication between the real-time
thread and the server thread a object called RTSig-
nalManager was implemented. The Scicos signal
blocks for the Rtxmlserver use this manager to
register their signals and parameters and during the
operation the signal value with time-stamp is passed
via thread-safe FIFOs to the Rtxmlserver. At

the moment the Rtxmlserver provides an access
via Http requests (a reduced Http server is im-
plemented according RFC-2616 [15]; TCP and UDP
servers are planed).

static pthread_t thrd;

static void *server_task(void *p)
{

struct sched_param param;
param.sched_priority = 10;

i f (sched setscheduler(0, SCHED_FIFO , ¶m)==-1)
{

exit(-1);

}
// ... process the server

}

void rtxmlserver_fnc(scicos_block *block , int flag)

{
i f (flag==1) { /* set output */ }

i f (flag==2) { /* get input */ }
i f (flag==5) { /* termination */ }

i f (flag==4)
{ /* initialisation */

// ... block operations

pthread create (&thrd , NULL , server_task , NULL);
}

}

LISTING 1: Schematic structure of the
Rtxmlserver Scicos block

The Http server supports GET requests to ac-
cess the file system and to load a web-page. In ad-
dition, a PUT-Request with the URI /rtxml.pipe
passes the RTXML-Request within the Http

request message-body to the RTXML-Request-
Handler. The handler parses the XML byte stream
and does the corresponding actions similar to SAX
[16]. The XML formated RTXML-Response is
sent back to the client within the message-body of
the PUT-Response. The whole description of the
RTXML-Requests and RTXML-Responses is not in-
tended within this contribution but sub-section 3.3
should give an idea about the structure of the XML

formated messages.

The concept to start a non-real-time thread
within a Scicos block (see listing 1) can be applied
for other purposes like image processing. In this
case, the function to get the image from a camera
and to do the image processing can be done within
a non-real-time task. The results are passed to the
real-time thread. This approach reduces the effort
to start the application and to share the data with
inter-process communication.

3.2 Client Side Application

The prototype of a client side monitoring system
shown in figure 8 is an Ajax based web-application
using JavaScipt and jQuery (see [17]). Ajax (with
jQuery) and the Http request method PUT are

5

used to establish and configure a connection with the
Rtxmlserver and to exchange the signals and pa-
rameters. This functionality is encapsulated within
the JavaScript Rtxmlclient class that prepares
and stores the data in arrays. These arrays can be
used for a visualization purposes, e.g., realized with
a JavaScript plotting library to illustrate the signals
continuously without refreshing the whole web-page.
The library jQuery UI [17] was used to improve the
look and feel of the visualization and to get a behav-
ior comparable with a native application.

Web-Browser

HTTP-Request

Rtxmlclient

JavaScript-Class
using Ajax

RT-Task
Data

Container

jQuery Web-
Application

HTML-Web Page

FIGURE 8: Simplified Structure Diagram
of the web-based application using Rtxml-

client

Figure 9 shows the screenshot of the standard
interface. It allows the configuration of the connec-
tion. If the connection to the real-time application
is established, the three signal scopes and the pa-
rameter list are automatically configured. This stan-
dard interface consists of a HTML file, some CSS and
JavaScript files. A custom interface can be created
with a text editor and without the need of further
compilers or a complex toolchain. This approach
allows to prepare a demonstration system mock-up
with a specialized interface for presentation purposes
or to create laboratory setups where the students
can configure the control-law parameters and test the
performance of the control-law.

The first prototype works very well and can be
used for applications, but if a high sample-rate and
more signals are transmitted it is necessary to re-
duce the number of transmitted data-points. Oth-
erwise, there is not enough CPU power to parse the
XML formated context with JavaScript. The reduc-
tion of data-points has no significant effect on the
quality of the visualization. To provide data records

with all sampled informations for offline analysis the
Rtxmlserver can record all data-points into a local
*.csv file and this file can be downloaded with the
web browser.

FIGURE 9: Screenshot of a web-based
monitoring example

3.3 About the RTXML-Request and

RTXML-Response

The RTXML-Request in listing 2 contains most
of the available functions. With the first XML tag
<C>...</C> the client provides the connection num-
ber so that the Rtxmlserver knows that it is the
same client. Then some action commands are sent
to the Rtxmlserver and at the end the parameter
with the id 6 is set with the value 2.44.

<R>
<!-- Connection -Number -->

<C>69</C>
<!-- Actions: -->

<A><N>GETPARAMETERS</N>
<A><N>GETSIGNALS</N>

<A><N>STARTRECORD</N><V>data.csv</V>
<!-- set parameter 6 to 2.44 -->
<P><I>6</I><V>2.44</V></P>

</R>

LISTING 2: An example of a RTXML-
Request

The RTXML-Responses have a similar format
(see listing 3). The Rtxmlserver collects all sig-
nals of one sample time, creates a list that contains
the time (double precision), signal id and signal value
(double precision), converts this list to a HEX-ASCII
string and places it withXML tags into the RTXML-
Response.

The main idea was to keep all information in dou-
ble precision so that there is no information lost due

6

to truncation. The HEX-ASCII string yields to a
100% increase of the bytes to transmit. In the future
the use of Base64 (RFC4648, [18]) coding is planed
because this increases the bytes to sent only about
33%. Furthermore, it should be checked if the XML

parsing can be improved.

<R>
<!-- Connection -Number -->
<C>69</C>

<!-- Provide Signals and Parameters -->
<P><I>5</I><N>Param1 </N></P>

<P><I>6</I><N>Param2 </N></P>
<S><I>1</I><N>Input </N></S>
<S><I>2</I><N>Output </N></S>

<!-- Signal Samples Hex-Formated -->
<!-- time ,id1,signal1 ,id2,signal2 ,..-->

<S><V>AF43.....4 B2C</V></S>
<S><V>AF43.....4 B3A</V></S>

</R>

LISTING 3: An example of a RTXML-
Response

4 Application Example

To demonstrate the proposed open RCP frame-
work this chapter is devoted to the position and sum-
pressure control of a non-linear hydraulic system by
the use of exact input-output linearization [11, 12].
The hydraulic system, realized with a PC and Bioe

for HIL simulations, is controlled by an other PC.
Both PCs use Linux with a rt-preempt patched ker-
nel to provide real-time capability. The signals like
position, pressure and volume flow are exchanged be-
tween the PCs via an analog interface and Bioe (see
figure 1). According to [19, 20, 21], the mathematical
model of the system illustrated in figure 10 can be
described with the set of ordinary differential equa-
tions

ẋ = v

v̇ =
1

m
[ApA − αApB − d v + c (L− L0 − x))]

ṗA =
Ef

VA0 +Ax
(QA −Av)

ṗB =
Ef

VB0 − αAx
(QB + αv A) ,

(2)

where �̇ denotes the total time derivative, A and αA

the piston areas, m the mass, Ef the isothermal bulk
modulus of the fluid (see, e.g. [21]), VA0 and VB0

are the initial volumes, c the spring coefficient and d

the viscous friction coefficient. The piston position
x and the pressures pA, pB are measurable states of
the system and it is assumed that the velocity v of
the piston can not be measured. The volume flows
QA and QB are the inputs of the system. The length

L is a geometrical parameter of the system and L0 is
the unstressed length of the spring. Here and in the
following let us assume for simplicity L = L0.

QA QB

m

x

L

viscous friction

c, L0

hydraulic

actuator

FIGURE 10: Schematic of the hydraulic
system

4.1 Control Law Design

The design goal of this application is to keep the
DAP position x and the sum-pressure pA + αpB as
close as possible to the desired values xd and pd. The
control deviation can be formulated with

e1 = x− xd e2 = pA + αpB − pd .

With the concept of exact input-output linearization
it can be shown that the inputs of the system appear
at

...
e 1 and ė2 and in consequence the system is input-

state linearizable. To keep these outputs as close as
possible to zero the dynamics

0 =
...
e 1 + α12 ë1 + α11 ė1 + α10 e1 (3)

0 = ė2 + α20 e2 (4)

are chosen with a set of parameters α10, α11, α12 and
α20 so that the dynamics (3) and (4) are asymptot-
ically stable and have the required behavior. In the
next step the control law

QA = QA(x, v, pA, pB, xd, ẋd, ẍd,
...
x d, pd, ṗd)

QB = QB(x, v, pA, pB, xd, ẋd, ẍd,
...
x d, pd, ṗd)

(5)

can be evaluated by solving the equations (3) and
(4) for the volume flows QA and QB. The time
derivatives ẋd, ẍd,

...
x d and ṗd can be provided by

a trajectory planning system and this allows a feed-
forward tracking control of the system (2). Let us
assume that the desired trajectories xd(t) and pd(t)
are smooth and changes very slow and so the choice
ẋd = ẍd =

...
x d = ṗd = 0 is justifiable. Consider that

the control law (5) depends on the piston velocity v

which can not be measured. Hence, a velocity and
disturbance observer is designed in the next step.

4.2 Observer Design

To implement the control law (5) a velocity ob-
server can be used. The realized HIL mock-up (see

7

figure 1) was realized with a minimum of effort and
the signals have small offsets. The pressures pA
and pB are very sensitive for signal-offsets because a
wrong measured pressure deals like an external dis-
turbance force and this irritates a reduced observer
for the velocity v. To fix this problem the system (2)
is extended by an unknown but constant disturbance
force Fd with the dynamic Ḟd = 0.

The following observer design (see, e.g., [12])
treats the general system

ẋ = v

v̇ =
1

m
(−c x− d v + F + Fd)

Ḟd = 0

with the position x, the velocity v and the distur-
bance force Fd. To get the equations for the DAP
system F = ApA − αApB has to be used. The
position x and the force F can be determined by
measurements and calculations and so a reduced ob-
server is designed to estimate the velocity v and the
disturbance force Fd. In the first step the following
state transformation

w1 = v + kv x w2 = Fd + kFd
x

is introduced and results in the linear and time in-
variant system

ẇ = Aobs w + u (6)

with the new state vector w = [w1 w2]
T , the matrix

Aobs =

[

kv −
d
m

1

m

kFd
0

]

and the input

u =

[(

d kv − kFd
− c− k2v m

)

x
m

+ F
m

−kv kFd
x

]

.

With a specific choice of parameters kv and kFd
the

matrix Aobs becomes a Hurwitz matrix and then the
standard approach of a trivial observer for the sys-
tem (6) can be applied to get an estimation ŵ of w,
where �̂ indicates the estimated value of �.

˙̂w = Aobs ŵ + u

Now it is easy to prove that the estimation error for
the velocity v and the disturbance force Fd

ev = v − v̂ = w1 − ŵ1

eFd
= Fd − F̂d = w2 − ŵ2

has the asymptotically stable dynamic

ė = Aobs e

with e = [ev eFd
]T . Nevertheless, the proof of the

stability of the observer does not allow for conclu-
sions concerning the stability of the overall system
because of the nonlinear system (2).

4.3 Implementation

To realize the HIL simulation Ubuntu 10.04 LTS
[22] with the rt-preempt patched 2.6.31-11-rt kernel
from the Lucid repository was installed. ScicosLab
4.4.1 [4] with the rt-preempt code generation pack-
age [9] is used for the simulation and real-time code
generation. The Bioe and Rtxmlserver blocks
were installed into the ScicosLab directory struc-
ture. A performance measurement of a dummy sim-
ulation with a cycle time of Ts = 2ms and a Bioe

with DTN250 (see table 1) was performed on an In-
tel(R) Pentium(R) M 1.4GHz notebook. During the
test duration of two hours the maximum Ts,max =
2.08ms and the minimum Ts,min = 1.928ms of the
cycle time were detected. It should be noted that
the measured time variations cover the rt-preempt
patched Linux notebook, the Bioe bus and the Bioe

element software.

In addition, the rt-preempt code generation
package [9] was modified so that a real-time scal-
ing parameter can be used to slow-down or speed-up
the HIL simulation. This feature can be very use-
ful in the case of complex systems (e.g. distributed
parameter systems) were the calculation of the dy-
namics can not be performed in real-time. In the
case of the DAP system control a real-time scaling
factor of three is used to keep the time of the Bioe

transactions and the settling time of the analog in-
terface circuit small compared to the cycle time. In
addition, RC low-pass filters with R = 1kΩ and
C = 1µF were used to convert the digital PWM
signals (fPWM = 15.6 kHz) into analog signals.

For the numerical simulation and HIL simula-
tion Scicos blocks of the systems (2) and (5) are
required. For this job a Maxima toolbox was devel-
oped that allows to export a system

ẋ = f(x, u, p) (7)

y = g(x, u, p) (8)

into a ready to use Scicos block. A Scicos

block normally consists of an interface-function and
a computational-function (see, e.g. [23]). The
interface-function is written in the Scilab language
and provides an interface to edit the system param-
eters p and the initial values of the state x. The
computational-function can be written in Scilab

or C and contains the set of ordinary equations

8

DAP−System

QA

QB

x
v
pA
pB

EALin−Control+Observer

xref
psumref

x
pA
pB

QA

QB

v_obsSample−Time

Ts
Goto

S.

S.

S.

S.

p−>dac

p−>dac

x−>dac

adc−>p

adc−>x

adc−>vv−>dac

adc−>p

N.

N.

N.

N.

Reference Position/Pressure

xref
psumref

"QA"

"QB"

"x"
"v"

"pA"
"pB"

["QA"]

["QB"]

["x"]
["pA"]

["pB"]

"xref"

"pref"

["xref"]
["pref"]

[..
From

Plot−Output File−Output

N. S.q−>dac adc−>q

q−>dac N. S. adc−>q

calc_psum "ps..

Analog Interface (S/H, Noise, ADC, DAC)
Analog Interface (S/H, Noise, ADC, DAC)

fr.. Tp
Goto

"vobs"

FIGURE 11: Numerical simulation of the DAP control realized with Scicos (Tp = 1ms, Ts = 5ms)

f(x, u, p) with the system input u and the equations
g(x, u, p) for the system output y.

Such a code-generation package is an important
component of a complete RCP framework because
it avoids the repeated implementation of equations,
the search for typing errors and it is easy to keep the
analytic calculations and the simulation code syn-
chronized. The created blocks for the DAP system
and the control law can be used for numerical simula-
tions and the real-time code generation with Scicos.

To obtain realistic results the numerical simula-
tion in figure 11 takes effects like quantization, signal
ranges and noise into account. The numerical results
fit very well with the HIL measurements and they are
discussed in the following section.

4.4 Results

Following system parameters were used for the
numerical and HIL simulation: m = 1kg, d = 1 Ns

m
,

c = 1 N

m
, A = 1 ·10−4m2, α = 0.7, VA0 = 5 ·10−6m3,

VB0 = 3.5 · 10−6m3, Ef = 1.6 · 105 N

m2 . Some of
the parameter values are not realistic because they
were chosen so that bad influences caused by noise,
quantization, offsets and signal limitations due to
the low-cost analog interface will be reduced. The
eigenvalues of the observer dynamic matrix Aobs are
placed with the coefficients kv = −3 and kFd

= −4
to −2. Finally, the poles of the error dynamic (3) are
defined with α12 = 90, α11 = 2700, α10 = 27000 at
−30 and the pole of the error dynamic (4) is aligned
with α20 = 10 to −10 .

The results are summarized in figure 12. The
first two plots illustrates the tracking behavior of
the piston position x and the sum-pressure psum con-
trol. The desired trajectories xd(t) and pd(t) are also

changed dramatically in order to obtain the step re-
sponse of the system. In the third plot the volume-
flow QA into the DAP are compared and the fourth
plot compares the real piston velocity (with noise)
and the estimated velocity from the numerical simu-
lation.

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0 1 2 3 4 5

P
is

to
n

P
os

iti
on

 x
 /

m

Reference
Simulation

HIL

 140000
 150000
 160000
 170000
 180000
 190000
 200000
 210000

 0 1 2 3 4 5

S
um

−
P

re
ss

ur
e

 p
su

m
 /

P
a

Reference
Simulation

HIL

−2e−005
−1e−005

 0
 1e−005
 2e−005
 3e−005
 4e−005
 5e−005

 0 1 2 3 4 5

V
ol

um
e−

F
lo

w
 Q

A
 /

m
3 /s

Simulation
HIL

−0.04
−0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0 1 2 3 4 5

V
el

oc
ity

 v
 /

m
/s

Time t / s

Simulation v
Simulation vobs

FIGURE 12: Comparison of the numerical
simulation results and the HIL measurements

9

5 Conclusions and Perspectives

The HIL simulation of an industrial motivated
control demonstrated that rt-preempt patched Linux
kernels, ScicosLab, Maxima, the presented open
hardware Bioe and the web-based monitoring sys-
tem prototype build a complete open rapid control
prototyping framework which can be used for edu-
cational purposes. Due to the web-based approach
there is no additional software except a modern web-
browser required to interact with the real-time sys-
tem. Furthermore, the web interface can be modified
to the needs of the application by editing the web
pages with a single text editor.

Improvements of the web-based monitoring sys-
tem and the release of a ready to use version for
the community with more human interface demos
are planed. An other point of interest is to use this
framework to realize a distributed parameter system
benchmark example and to compare the results with
measurements. Therefore, more complex Bioe in-
terfaces will be used and the realization of 2D/3D
visualizations are planed.

References

[1] RTAI - Real Time Application Interface Official
Website: https://www.rtai.org. Web. 20 Aug.
2011.

[2] Real-Time Linux Wiki:
http://rt.wiki.kernel.org. Web. 20 Aug. 2011.

[3] Scilab / Scicos Website:
http://www.scilab.org. Web. 20 Aug. 2011.

[4] ScicosLab 4.4.1 - Project Website:
http://www.scicoslab.org. Web. 20 Aug. 2011.

[5] COMEDI - Linux Control andMeasurement De-
vice Interface - Website:
http://www.comedi.org. Web. 20 Aug. 2011.

[6] FSM Labs, Inc.: RTLinux3.1 Getting Started
with RTLinux, 2001.

[7] Xenomai: Real-Time Framework for Linux
Website:
http://www.xenomai.org. Web. 20 Aug. 2011.

[8] Maxima, a Computer Algebra System; Web-
site: http://maxima.sourceforge.net. Web. 20
Aug. 2011.

[9] Bucher, R.: rt-preempt Code Generation Pack-
age for ScicosLab
http://www.dti.supsi.ch/b̃ucher. Web. 20 Aug.
2011.

[10] Basic Input Output Elements Project Website:
http://bioe.sourceforge.net. Web. 20 Aug. 2011.

[11] Isidori, A.: Nonlinear Control Systems, 3rd Edi-
tion. Springer, Londen, UK, 1995.

[12] Schlacher, K.; Zehetleitner, K.: Control of Hy-
draulic Devices, an Internal Model Approach In:
Analysis and Design of Nonlinear Control Sys-
tems. Springer-Verlag Berlin Heidelbarg, 2008.

[13] Weichinger, K.: Tonregelung einer Trompete
mit einem Low-Cost Automatisierungssystem
und RTAI Linux, JK University Linz, Austria,
2008.

[14] Fielding, R. T.: Architectural Styles and the
Design of Network-based Software Architectures.
Dissertation, University of California, Irvine,
2000.

[15] Fiedling, R. T. et al.: RFC2616: Hyper-
text Transfer Protocol - HTTP/1.1, June 1999,
http://www.ietf.org/rfc/rfc2616.txt, Web. 20
Aug. 2011.

[16] SAX-Project Website:
http://www.saxproject.org. Web. 20 Aug. 2011.

[17] jQuery Project Website: http://jquery.org.
Web. 20 Aug. 2011.

[18] Josefsson, S.: RFC4648: The Base16, Base32,
and Base64 Data Encodings, October 2006,
http://www.ietf.org/rfc/rfc4648.txt, Web. 20
Aug. 2011.

[19] Grabmair, G.; Schlacher, K.; Kugi, A.: Geomet-
ric energy based analysis and controller design
of hydraulic acutators applied in rolling mills.
European Control Conference (ECC), Cam-
bridge, 2003.

[20] Kugi, A.: Non-linear Control Based on Physical
Models, volume 260 of Lecture Notes in Con-
trol and Information Sciences. Springer-Verlag,
London, 2001.

[21] Murrenhoff, H.: Grundlagen der Fluidtechnik,
Teil 1: Hydraulik. Shaker Verlag, Aachen, 2007.

[22] Ubuntu Linux Distribution Website:
http://www.ubuntu.com. Web. 20 Aug. 2011.

[23] Campbell, S.; Chancelier J.; Nikoukhah,
R.: Modeling and Simulation in Scilab/Scicos.
Springer. 2006.

10

