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Abstract

During the last few years, Linux has established itself as the fastest growing platform in the embedded
sector. This arose from the fact that there is no other Operating System which supports such a big variety
of different hardware. Also the ongoing rapid development of the Realtime Preemption Patch made Linux
a perfect choice for automation and control applications which require hard-realtime capabilities.

ARM CPUs are widely used in embedded designs. There is a huge variety of cheap ARM9 and powerful
ARM11 and Cortex CPUs which are predestined for use in embedded realtime controllers (because of the
low power consumption and the growing number of features).

This paper demonstrates the behavior of the Realtime Preemption Patch on different ARM based
embedded designs. The specific measurement environments will be explained in detail and the basics on
how to get the Realtime Preemption Patch running on a specific ARM platform (and the major pitfalls)
will be shown. Also the differences among ARM9 / ARM11 and Cortex CPU designs and how those
differences influence the realtime behavior will be examined. As a result, the paper provides a decision

guide for choosing the best fitting ARM design for a Realtime Linux based embedded platform.

1 What is Realtime?

1.1 Terms and definitions

Before looking into different ARM CPU designs and
their behaviour in a Realtime Linux environment, I’d
like to introduce some terms and definitions. First
of all we should clarify the meaning of the word
”Realtime”. Misleadingly realtime systems are often
considered to be as fast as possible. But realtime
systems should be ”as fast as specified rather than
as fast as possible” (Doug Nichaus). Realtime sys-
tems have to meet specific timing constraints, which
means they have to behave in a completely determin-
istic way. Calculations have to be done at a specific
point in time and the system has to respond to exter-
nal events in a given timeframe. The time duration
between the occurancy of an external event and the
correct reaction to that event is termed as latency.
The variation of the latency is called jitter. Realtime
systems are evaluated on the basis of their latency
and their jitter (are those values deterministic and
do they meet the needed timing constraints?).

2 ARM designs

2.1 ARMY9

ARMS is a 32 bit RISC CPU design. With this gen-
eration of CPUs ARM has moved from a ”von Neu-
mann” architecture to a Harvard architecture (which
means the CPU can read an instruction and perform

a data memory access at the same time). There are
two ARM9 subfamilies:

e the ARMOIT family (based on the ARMv4T ar-
chitecture)

e the ARMIE family (based on the ARMv5TE
architecture,  which  implements longer
pipelines. It also has a slightly enhanced in-
struction set)

The major disadvantage of the ARMv4 / ARMv5
designs is their cache implementation. The cache
is organized as virtual indexed and virtual tagged,
which means that both the index and the tag are



based on virtual addresses. On Linux each process
has its own virtual address space. This implies that
a physical address might be mapped to different vir-
tual addresses at a time. So this cache implemen-
tation will lead to a more frequent cache flushing.
The cache has to be invalidated after each context
switch. The cost of the cache flushing is about 1k
- 18k CPU cycles. The ”indirect cost” (influenced
by the side operations for filling up the cache lines
and the TLB) can take up to 50k CPU cycles. This
means 200us for a 250MHz CPU! There are two dif-
ferent approaches for addressing this problem:

e Using a flat address space (uClinux)

e Using the F ast C ontext S witch E xtension
(FCSE)

On ARM9 FCSE offers a 7 bit PID register, which
can be combined with 25 bit virtual addresses. This
will lead to 128 independent address spaces. Richard
Cochran recently posted a patch on the Xenomai-
Devel list, which implements FCSE for the Intel
IXP425 architecture. Gilles Chanteperdrix posted
an enhanced version on the ARM kernel list, which
has been tested on a AT91RM9200 CPU. The ad-
vantage of this approach is the combination of mem-
ory protection and a good cache performance. The
disadvantage is the limitation of 128 processes and
32MB address space (although this might be suffi-
cient for most of the embedded systems).

2.2 Xscale

Xscale is Marvell’s implementation of the ARMvH
architecture. The Xscale family consists of five dif-
ferent families:

o IXP (network processors)

e IXC (control plane processors)
e IOP (i/o processors)

e PXA (application processors)

e CE (consumer electronix processors)

There are several powerful Xscale CPUs, which are
designed to run at high CPU frequencies. But since
the design is also based on the ARMvb5 architecture,
Xscale also suffers the problem with virtually tagged
caches.

2.3 ARM11

ARMI11 is a 32 bit RISC design which implements
the ARMv6 instruction set. There are 4 subfamilies
of the ARM11 architecture:

e ARMI1176 (targeted for consumer electronics)

e ARM1156 (targeted for automotive, embedded
control, imaging, ...)

e ARM1136 (targeted for network infrastructure,
consumer electronics and infotainment)

e ARMI11 MPcore, which is a multiprocessor de-
sign

The complete family implements the Jazelle technol-
ogy for efficient Java execution (on ARM9 this is only
available for the ARM926-EJS cores). ARM1136JF-
S, ARM1176JZF-S and ARM1156T2F-S cores also
have a powerful Vector Floating Point Unit. The
main difference to the ARM9 family is the cache de-
sign. Unlike the ARM9 implementation, the ARM11
cache implementation is virtually indexed and phys-
ically tagged. In combination with its high perfor-
mance memory system this speeds up the context
switching time by several orders of magnitude (in
comparison to the ARM9 family). Furthermore, the
ARM11 family is designed to run at higher CPU fre-
quencies.

2.4 Cortex

Cortex constitutes the new generation of ARM
CPUs. The Cortex family is splitted into three fam-
ilies for different applications:

e Cortex A: Application (variable caches, MMU
/ MPU)

e Cortex M: Microcontroller (no cache, MPU op-
tional)

e Cortex R: Realtime (variable cache, MPU op-
tional)

Those families are evolved from the applications
which are adressed by the most popular ARM de-
signs on the market: ARM7, ARM9 and ARMI11.
This doesn’t mean that Cortex implents those de-
signs! The Cortex families are just designed to meet
the requirements of the target applications. The
Cortex M series adresses the Microcontroller mar-
ket, so it can be considered as a modern successor of
the ARMY7 design. The M series combines a simple



programming concept with the the performance of
modern CPUs. The Cortex A series are designed for
complex applications and for modern operating sys-
tems. The Cortex R series are designed for Realtime
applications (Low Level RTOSses, ...). In view of
Realtime Linux the Cortex A series is quite interest-
ing, because it can be considered as the successor of
the ARM11 design. The Cortex A series also offers
a multicore design (Cortex A9 MPcore).

3 Realtime Preemption Patch

The Realtime Preemption Patch was started by Ingo
Molnar and Thomas Gleixner. Unlike other ap-
proaches Preempt RT doesn’t introduce a Micro-
kernel. Preempt RT brings hard realtime capabili-
ties directly into the Linux kernel. One of the ba-
sic features which have been introduced by the Re-
altime Preemption Patch, are Threaded Interrupt
Handlers. IRQ Handlers are moved into their own
kernel thread, which means they can be scheduled
like any other process in the system. The basic fea-
ture of Preempt RT is the replacement of the lock-
ing primitives. Spinlocks are relaced by sleeping mu-
texes (that’s why Preempt RT is sometimes called
the ”sleeping spinlocks patch”). Lots of the Pre-
empt RT features already made it into Mainline: PI
Mutexes, High Resolution Timer, Preemptive RCU
(Read Copy Update), IRQ Threads.

3.1 The Realtime Preemption Patch
on ARM

The great thing about the Realtime Preemption
Patch is, that everything is implemented in a
portable and generic way. Which means that if a
platform is supported there’s nothing special to care
about. So the usage on an ARM CPU isn’t that dif-
ferent to the usage on a generic x86 based system.
Recent versions of Preempt RT have full ARM sup-
port. Table 2 shows the available features and the
kernel version since when they are available for the

ARM platform.

| Feature | Kernel
Deterministic ~ sched- | vanilla
uler
Preemption Support vanilla
PI Mutexes vanilla
High-Resolution Timer | vanilla (since 2.6.24)
Preemptive Read- | vanilla (2.6.25)

Copy Update
IRQ Threads
Full Realtime Preemp-
tion Support

vanilla (since 2.6.30)
Preempt RT

TABLE 1: Preempt RT features on ARM

In addition to the kernel features, there are also some
prerequisites for the userspace environment. The C
Library needs a proper threading implementation,
PI futex support and clock handling. For GLIBC
at least version 2.5 is needed. Be careful: Currently
uClibe can’t be used for Realtime applications. The
most recent release has still no support for priority
inheritance pthread mutexes.

4 Measurements

4.1 Suitable test scenarios
4.1.1 Load scenarios

As already mentioned in 1.1 the behaviour of a Re-
altime system must be deterministic. A Realtime
system is characterized by its latencies and by its
jitter. When choosing a Realtime platform, one has
to prove, that this platform meets the timing require-
ments of the application under all circumstances.
Benchmarking a Realtime system means to examine
the latencies and the jitter in a worst-case scenario.
An Operating System has to manage the system re-
sources (CPU, memory, ...) and to coordinate the
activities like external events and user applications.
So, a worst-case scenario for an OS means a high uti-
lization of the system resources and a large number
of applications and external events (like interrupts).
For a Linux system such a scenario could be easily
achieved with:

e hackbench: Hackbench has been designed as
a scheduler benchmark. It creates n groups
of 20 servers and 20 clients. The servers and
the clients talk to each other via sockets. The
number of groups is given by a commandline



argument (Example: hackbench 10 would cre-
ate 400 processes: 10 * 20 * 20). This scenario
generates a high CPU load and high memory
utilization.

e Floodping from another system: Adding the
-f options to the ping command causes ping
not to wait after sending an ICMP message.
It’ll just send the packets as fast as possible.
"Ping flooding” the target system from a dif-
ferent machine will cause a huge number of
network interrupts. Be careful: The Flood-
ping will cause the TRQ Handler of the net-
work interface to run very often. It’ll also in-
crease the runtime of the Soft IRQ Handlers
for the RX and TX handling. All of them
are Kernel Threads with Realtime priority. So,
on PREEMPT_RT please check /proc/sys/ker-
nel/sched_rt_runtime_ns. This defines a thresh-
old for the runtime of Realtime Tasks (to pre-
vent a starvation of the low priority tasks).
The default value is 950ms, which means if
the rt runtime exceeds 950ms, the rt tasks
won’t be scheduled up to the full second. You
can disable this behaviour by writing -1 to
sched_rt_runtime_ns.

4.1.2 Test tools

In addition to an appropriate load scenario, suitable
test applications are needed. Those test applications
should prove the determinism of our Realtime Sys-
tem and they should give us an idea about the worst-
case latencies and the jitter. Therefore the following
parameters are of interest:

e The responsiveness to external events

e The accuracy of tasks which are scheduled for
a specific time

The response times for external events can easily be
determined by a simple UIO driver. The UIO driver
just implements an interrupt handler, which:

e responds to an interrupt, which might be gen-
erated by a GPIO input and

e toggles a pin

The response time can be determined with a scope.
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Measuring the IRQ response

Figure 1 shows this test scenario: A function gen-
erator is used as an interrupt source, which is con-
nected to a general purpose pin of the target. The
UIO driver resonds to this interrupt and toggles a
pin. Both, the interrupt source and the "response
pin” are connected to different channels of a scope.
So, the time difference between the slopes on both
channels shows the response time of the interrupt.
Since we implement the interrupt handling with an
UIO driver, we can wait for the interrupt occuracy
with a userspace task. The userspace task can toggle
the "response pin” one more time. So, the time dif-
ference between two peeks of the "response pin” can
give us an idea about the context switching time.

input signal

| output signal

Userspace

while (test_is_running ())

read (uio fd; &num_events);
check_events(num_events);

write(uio_fd);

FIGURE 2: Measuring the context switch-
mg time

As shown in figure 2 the userspace task does a block-
ing read on the UIO driver. After an interrupt event
has occured, the IRQ handler will be executed and
the UIO core will wake up all waiters on the UIO



device. The userspace task itself "abuses” the UIO
write() function to toggle the response pin. This will
cause two context switches between two peaks of the
“response pin”: Interrupt occurs - Userspace task
will be woken up - Userspace Task calls back into ker-
nel to toggle the pin. Be careful: We can’t force the
UIO interrupt handler to run in hard interrupt con-
text. The UIO core uses wakeup-interruptible (which
is not allowed in hard interrupt context). Since the
read() call to the UIO driver will return the number
of interrupt events, we use this to check, if we have
missed an interrupt event. The UIO driver can be
implemented as a UIO platform driver (uio_pdrv),
which can be registered in the board support. The
following listings show, how this mechanism can be
implemented:

static irqreturn_t uio_latency_handler
(int irq,
struct uio_info *dev_info)

at91_set_gpio_value (AT91_PIN_PB21, 1);
udelay (2);
at91_set_gpio_value (AT91_PIN_PB21, 0);

/* edge triggered interrupt
* so just returning IR{_HANDLED 4is ok
*/
return IRQ_HANDLED ;
X

int uio_write_gpio
(struct uio_info *info,
s32 irq_on)
{
at91_set_gpio_value (AT91_PIN_PB21, 1);
udelay (2);
at91_set_gpio_value (AT91_PIN_PB21, 0);
return O0;

}

struct uio_info uioinfo_latency = {
.name = "at91_latency_measurement",
.version = "0.0.1",
.handler = uio_latency_handler ,
.irqcontrol = uio_write_gpio,

¥s

static struct platform_device
uio_latency = {
.name = "uio_pdrv",
.id = -1,
.dev.platform_data = &uioinfo_latency,
b5

init

at91_add_device_uio_latency(void)

void

{

uioinfo_latency.irq =

gpio_to_irq (AT91_PIN_PB19);
/* configuring the gpio pins */
at91_set_gpio_input (AT91_PIN_PB19, 0);
at91_set_deglitch (AT91_PIN_PB19, 1);
at91_set_gpio_output (AT91_PIN_PB21, 0);

platform_device_register(&uio_latency);

The userspace task for the test environment
looks like:

int32_t num_events = O,
int32_t irq_on = 1;

old_events = 0;

fd = open("/dev/uioO0", O0_RDWR);
while (1) {
old_events = num_events;
read (fd, &num_events,
sizeof (num_events)) ;
if ((num_events - old_events) > 1
&% !first_run)
printf ("Missed events\n");
write(fd, &irq_on, sizeof (irq_on));
if (first_run)
first_run = 0;

}

The accuracy of a timer task can be benchmarked
with cyclictest. Cyclictest is a high resolution timer
test software, which has been initially written by
Thomas Gleixner. It’s part of the rt test tools (main-
tained by Clark Williams). Cyclictest is highly con-
figurable and also includes some tracing options for
ftrace and other kernel tracers. Since cyclictest cov-
ers several codepaths (we set up a timer - the systems
programs the timer chip - the timer interrupt occurs
- the system has to wake up the task) it gives a real
good overview of the realtime performance of a sys-
tem.

4.1.3 Test scenarios used for the measure-
ments

Based on the scenarios shown in Chapter 4.1.1 and
Chapter 4.1.2 we define the following test environ-
ment:

1. External events: A function generator will be
set up to generate events with a frequency
of 1000 Hz. A UIO driver and a userspace
task will respond to those events. The in-
terrupt response time and the time which is
needed for two context switches will be mea-
sured. The Interrupt handler will be priorized
with SCHED_FIFO 99 and the userspace task
with SCHED_FIFO 98.



2. Timer accuracy: Cyclictest will be set up to
create a timer task based on clock_nanosleep.
The timer interval is 1ms, the priority is
SCHED_FIFO 80.

For both test cases load will be generated with hack-
bench and with a ”Ping Flooding” from a different
machine.

4.2 ARM9
4.2.1 Target hardware

The measurements were taken on an Atmel
AT91SAM9263 evaluation kit. Technical data:

e CPU: Atmel AT91SAM9263 (ARM926-EJS) @
180MHz

e RAM: 64MB SD-RAM

4.2.2 Results

Figure 3 shows the result for the interrupt latency.
The falling edge of the upper channel shows the in-
terrupt event. The rising edge of the lower channel
is triggered by the IR(Q handler. The worst-case in-
terrupt latency in a long-time run was at 248us.

' Agilent Technologies

FIGURE 3: IRQ latency ARMY9

Figure 4 combines the interrupt latency and the con-
text switching time. The worst-case latency for wak-
ing up a userspace task and calling back into the
kernel was 374us. The userspace task didn’t miss

any interrupt events.

Agilent Technologies

FIGURE 4:
ARM9

context switching time on

Figure 5 shows the histogram of the cyclictest run.
The average latency is at about 85us, the worst-case
latency is 312us. In chapter 4.1.2 I mentioned, that
cyclictest gives a good overview of the realtime be-
haviour of a system. This cyclictest run proves that
theory once again, since the test run shows the same
worst-case latencies as the interrupt latency mea-
surements.
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FIGURE 5: High resolution timer on
ARMY9

4.3 ARM11

4.3.1 Target hardware

These measurements were done on a Garz & Fricke
Adelaide module, which is based on a Freescale

1.mx31 CPU. Technical data:

e CPU: Freescale .MX31 @ 532 Mhz
e RAM: 64 MB DDR RAM



4.3.2 Results

Figure 6 shows the results for the interrupt latency
and the context switching time. The rising edge of
the lower channel shows the occurancy of the irq
event. The first peek on the upper channel shows
the responce of the UIO handler. The second peek
on the upper channel shows the response which is
generated by the write() call of the userspace task.
A long-time test run showed a worst-case latency for
the UIO handler of about 65us. The worst-case la-
tency for the UIO handler + 2 context switches was
about 110us. The application didn’t miss an inter-
rupt event.
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FIGURE 6:

IRQ
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Figure 7 shows the result for the cyclictest run. It
shows an average latency at 35us and a worst-case
latency at 72us.
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FIGURE 7: High resolution timer on
ARM11

Since the results of those test were quite impress-
ing, one more test scenario has been added for the

ARMI11 case. The Interrupt frequency has been in-
creased until the system became unstable. In this
scenario the system kept beeing responsive up to a
interrupt frequency of 150kHz! After reducing the
frequency the system startet to be responsive again!
So the system didn’t get into an unstable state. It
was just busy servicing interrupts.

5 Conclusion

5.1 Analyzing the results

The benchmarking results on both platforms have
proven a 100% deterministic behaviour of Preempt
RT on ARM. So, Preempt RT on ARM CPUs can
meet hard realtime requirements. Table 2 contrasts
the benchmarking results of ARM9 with the results
on the ARM11 platform.

ARM9 ARM11
(AT91SAM9263) | (i.mx31)
IRQ latency 248us 68us
UIO wakeup 374us 110us
cyclictest 312us 72us
TABLE 2: Comparison of the worst-case

latencies on ARM9 and ARM11

It’s quite obvious, that ARMI11 can achieve much
better latencies than ARM9. This is mainly re-
lated to the caching issue mentioned in chapter 2.1.
The worst-case latencies on ARM11 are about 200us
lower.

5.2 Decision guide

ARMY9 based systems can achieve worst-case laten-
cies of about 250us. If we are running a cyclic task,
the worst-case latencies shouldn’t exceed 25% of our
cycletime. So, the lowest cycletime which can be
achieved on ARM9 platforms is about 1lms. The
worst-case latencies on ARM11 are much better. The
worst-case latency is at about 100us. This should
be sufficient for cycle times down to 400/500us. So,
when worst-case latencients lower than 250us and
cycletimes lower than 1ms are needed the system
should be based on an ARM11 or a Cortex A8 design
(which is designed to meet the requirements of the
ARM11 platmorm). Figure 8 gives an overview of
the boundary conditions for choosing an appropriate
ARM design.
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