Porting RT-preempt to Loongson2F

Wu Zhangjin, Nicholas Mc Guire
Distributed & Embedded System Lab, SISE, Lanzhou University, China
Tianshui South Road 222,Lanzhou,P.R.China
wuzhangjin@gmail.com, der.herr@hofr.at

Abstract

Loonsong2F, is a MIPS compatible single core CPU, it is a low-power, mid-range performance proces-
sor and therefore suitable for industrial usage. This paper focus on the effort of porting the RT-preempt
extension of Linux to this processor based platform(FuLoong2F). we will briefly introduce the features of
this platform, and outline the motivation of selecting RT-preempt, and then discuss the technical issues
of porting RT-preempt to a new architecture, and describe the specifics of the platform. Further we cover
the non-technical issues of how to integrate such work into mainstream development, and finally present
some preliminary benchmark results based on community tool (notably cyclictest).

KeyWords: RT-preempt, Loongson, Real Time, Linux, industrial applications

1 Introduction

The 2nd generation of CPUs from Loongson[5] de-
signed by ICT,CAS in China is currently at the
2F release, with the 2G to be expected this year.
This MIPS compatible single core CPU is a low-
power, mid-range performance CPU primarily tar-
geting desktop and net-books. The features are listed
in table 1.

800MHz-1GHz

4 Watt.

scalable cpu frequency
North bridge,DDR2 Controller

CPU Core Frequency
Power Consumption
Power Management
Built-in

TABLE 1: Main features of Loongson2F

The FuLoong(2F)[6] Mini PC made by Lemote,
as a Loongson2F based machine, the total power con-
sumption is only 10 watt which ensures quiet opera-
tion, and With small size (190x145x37mm) and light
weight (0.85KG). It provides a large set of standard
interfaces, including 4 USB2.0 Host High-Speed In-
terface, On-board dual LAN, 1 mini IDE interface,
RS232 compliant serial port, 1 IR control receiver
interface and it has reserved extended interfaces for
wireless network card and LCD display, the form is
shown in picture 1.

FIGURE 1:

FuLoong(2F) Mini PC

Due to its low power-consumption, fan-less op-
eration and integration in form-factors suitable for
industrial usage, we have been working on porting
suitable RTOS to it, the primary targets for this ef-
fort have been the XtratuM hypervisor and mainline
RT-preempt[7]. We will not further cover XtratuM
(which is in an early development stage) but rather
focus on the mainline RT-preempt, to enhance its
usability in industrial applications requiring reliable
real-time services.

In the following sections, we will briefly outline
the motivation of selecting RT-preempt and then fo-
cus on the technical issues of porting RT-preempt

to a new architecture and the specifics of the Fu-
Loong(2F) platform. Further we cover the attempt
of integrating such work into mainstream develop-
ment, and finally present some preliminary bench-
mark results based on cyclictest[14]).

2 Why RT-preempt

The FuLoong(2F) machine, as introduced above, uti-
lizes free software, thus is provided with source code
for all system software and all standard services.
Currently, it only runs Linux kernel based operating
systems, including Lemote Loonux, Debian, Gentoo,
Gnewsense (though Vxworks, Window CE report-
edly can also run on it, but are not in the public
market yet).

To meet the basic requirement of real-time ser-
vices in industrial applications and also to make
the RTOS porting project predictable, we selected
RT-Preempt, after comparing several RTOSs for
MIPS, including Vxworks, RTLinux/GPL, RTAI,
Xtraum+PartiKle.

Vxworks is a commercial RTOS which is not easy
to get, RTLinux/GPL is bound to the 2.4.X series of
kernels and it’s migration to XtratuM is not yet com-
pleted, RTAI for MIPS is too old, XtratuM+PartiKle
is in its early development stage and targets very spe-
cific use-cases. But RT-preempt, as an Real Time
Extension to mainline Linux, although the response
time will likely always be a bit lower than RTLin-
ux/GPL or a comparable dedicated RTOS, but is
ready to “control an industrial welding laser”[7].
From the current development of RT-Preempt and
its support by OSADL it can be expected that RT-
Preempt will be able to cover a majority of the typ-
ical industrial real-time demands in the near future.
Further one of the most attractive point is that there
is an existing MIPS-specific support: 2.6.26.8-rt16,
although it can’t run on FuLoong(2F) directly.

And other than the realtime environment, RT-
preempt is provided with the familiar Linux/POSIX
programming environment, file systems, networking,
and graphics which will help to expand the applica-
tion area and also ease the Real Time Programming
a lot. Although the current RT-Preempt source is
a patch against Linux baseline, the active develop-
ment of RT-preempt (the latest version is 2.6.31-rc4-
rt1)[8] and the success of lots of upstream patches
indicate that it can be expected that the whole RT-
preempt will go mainstream within the next view
mainstream releases. It should be noted that the
upcoming 2.6.31 kernel already includes most of the
essential RT-Preempt extensions and there are ex-
tensive efforts to unify core API (notably threaded
interrupts).

3 Porting RT-preempt

The basic procedure of porting RT-preempt to
Loongson2F includes,

1. download the original RT-preempt patches
from its repository|§].

2. build or download cross-compile environ-
ment for MIPS/Loongson2F (only gce>=4.4
has Loongson2F-specific support)

3. fix the grammar errors with the help of cscope,
objdump, nm, readelf...

4. read, analyse the x86 & powerpc specific of RT-
preempt

5. port the arch-dependent parts(including ba-
sic RT-preempt and debugging tools) to MIP-
S/Loongson2F platform

6. debug it on Qemu/Malta and FuLoong(2F)

7. optimize with KFT /Ftrace/Perf_counter/Oprofile,

find out the hotspots and tune the different la-
tencies(interrupt latency, schedule latency...)

8. benchmark with cyclictest

9. release & try to upstream by posting to the
respective mailing lists and contacting the re-
spective maintainers (MIPS and RT-Preempt).

10. fix the code once the first reviews come in and
submit again

but this section will mainly focus on three parts,
including how to get linux-2.6.26.8-rt16 running on
FuLoong(2F) initially, migrate mips-specific support
to linux-2.6.29-rc6 and later versions and real time
debugging tools(ftrace, perf_counter) porting along
with real-time performance optimization.

3.1 Getting linux-2.6.26.8-rt16 onto
FuLoong(2F)

The original linux-2.6.26.8-rt16 includes basic MIPS
support, but after fixing up a few compiling errors
and running it on Qemu/Malta, it could not yet
run on FuLoong(2F) directly. The problem is found
out with the help of PMON(BIOS & Bootloader),
early_printk, watch register of Loongson2F, and se-
rial port, and at last locate the bug in include/asm-
mips/atomic.h. The original RT-preempt tried to
force all of the MIPS processors to use the Il,sc
instruction to do the atomic operations if PRE-
EMPT _RT was enabled, but it ignored the following
two situations:

e No ll,sc instructions in the MIPS processor

e No macro cpu-has_llsc defined to 1

if any of the above condition occurs, the result
will be: all of the atomic operations will be always
empty or just before the cpu_data[0].options variable
is initialized (if the macro is not defined to 1, it will be
defined as cpu_data[0].options & MIPS_CPU_LLSC).

Unfortunately, although Loongson implemented
the Il,sc instructions, but there is no macro
cpu-has_llsc defined as 1, so, it failed when booting.

So, the corresponding fix is removing the buggy
conditional compilation statement, and at the same
time add a Loongson-specific cpu-feature-overrides.h
to define the macro. To reduce the size and opti-
mize the performance of Linux, other macros (re-
lated to describe the specific CPU features of the
Loongson 2F) were also added in (i.e. #define
cpu_dcache_ line_size() 32, etc).

These macros will save about several hundred Kb
of the kernel image, and will help the gcc compiler
to remove the condition statement branches and at
last optimize the performance.

3.2 Migrate mips-specific support to
latest version of RT-preempt

As Linux is a rapidly developing code-base, there
is little point in beginning a port with an out of
date kernel (any kernel older than two releases is out-
of-date) as this will break when trying to upstream
any such patch-set. After making linux-2.6.26.8-rt16
working on FuLoong(2F) as a first step, We planned
to do some optimization, but found out that ftrace
does not works well on it and almost at the same
time, found that linux-2.6.29-rcX-rtY was already re-
leased. Although 2.6.29-rcX-rtY was without mips-
specific support, but the ftrace seems more mature,
and there was a new perf_counter debugging tool in-
troduced, so, We stopped to work on linux-2.6.26.8-
rt16 and moved on to linux-2.6.29-rcX-rtY.

Since at that moment, the latest Linux for loong-
son is linux-2.6.27.1, the next step was to migrate
Linux for loongson to linux-2.6.29 at first (main-
stream not the rt-preempt variant), and then mi-
grate the mips-specific RT-preempt. When doing
this job, We have referred to these wonderful re-
sources [9, 10, 2, 1] (one wonders where the claim
that the Linux kernel is not well documented comes
from).

To simplify the description of this migration,
it’s better to refer to the commit(70e06e) log of
the latest mips-specific RT-preempt in the linux-
loongson/2.6.29/rt-preempt branch of the rt4ls git
repository[11], The main changes:

1. un-thread the timer and cascade interrupt

Add TRQF_NODELAY to the irq flags to un-
thread the MIPS timer and the south bridge
8259 cascade interrupt. we must use the old
spinlock if un-threading them, otherwise there
will be deadlock. and although the i8253 timer
is also un-threaded, but this MIPS timer is nec-
essary instead of i8253. for it provides with
higher precision clock for real time require-
ment.

. using mutexed spinlock instead of old spinlock-

/BKL in RT-preempt

Rename old raw_spinlock /rw_t to __raw_spinlock /rw_t,
rename old local.irq-disable/enable to
raw_local_irq_disable/enable, do real irq dis-
able/enable operation on exception, system

call.

. using mutexed semaphore instead of old

semaphore via adding a non-RT-preempt spe-
cific rwsem.h

4. reducing scheduling latency via adding a

scheduling point in do_signal

Note that the FulLoong-specific part is very
small, only need to un-thread the cascade interrupts.

3.3 Porting debugging tools & perfor-

mance tuning

3.3.1 Porting ftrace

ftrace[13] comes from “function tracer”, but recently
it becomes a tracing framework, various new tracers
have been added via it, such as irgsoff, preemptoff,
context switches tracers and so forth.

The original ftrace(static ftrace, dynamical
ftrace, function graph tracer and system call tracer)
is arch-dependent, which need to implement the
arch-specific _-mcount relative functions. And about
the new tracers, although it is available, but has little
value for real time tracing since they use the jiffies-
based trace_clock_local(call sched_clock()) to record
the local tracing times, so, they have very low tim-
ing precision(1/HZ, about 1ms when HZ is 1000),
therefore the mips-specific sched_clock() needed to
be implemented to get high timing precision.

e mips-specific _mcount

when enabling HAVE_-FUNCTION-TRACER, the -
pg option of gcc will be enabled to in-
sert an _mcount function call to the entry

of any function without the “notrace” an-
notation or the functions in the files ex-
plicitly compiled without the -pg option(i.e
CFLAGS_REMOVE _ftrace.o = -pg), the func-
tion call looks as follows.

// save call_site’s next pc to at

move at,ra

// save next pc to ra and call _mcount
jal _mcount

and the _mcount function itself works like a
wrapper, if ftrace is disabled in user-space, it
just return back to the caller.

jr ra

move ra,at

otherwise, it will call a real tracing function,
and transfer the arguments in the at register
and the ra register with an negative offset of
sizeof(jal _mcount).

When enabling and
HAVE_-FTRACE-MCOUNT-RECORD, the calling sites to
the function _mcount are recorded to an ELF
section(-_mcount_loc), so, there is a possibility
to replace this calling sites by a NOP opera-
tion (with more or less no impact) or changed
back to a real call to _-mcount and then we can
indicate the functions to trace or filter.

HAVE_.DYNAMIC_.FTRACE

and what about the nave_runcrion.craPH TRACER?
it is actually a simulation of the -finstrument-
functions option of gcc which can generate
instrumentation calls for entry and exit to
functions. since the -pg only insert a call to
_mcount at the entry to functions, so, need to
simulate an exit to them, how? let’s remove
it’s vail:

func:

jal _mcount -> prepare_function_return

(replace ra by return_to_handler)

jr ra -> return_to_handler
-> ftrace_return_to_handler

As the above description shows, when enter-
ing into the _mcount function, it call pre-
pare_function_return and try to save the old
return address, replace ra by return_to_handler
and meanwhile, record the calltime, then
when return from func, dont really return
immediately rather call return_to_handler and
then ftrace_return_to_handler, this function
will record the rettime. Next calculates the
function duration via rettime-calltime, and at
last, does the real return to the saved return
address.

e mips-specific sched_clock()

In x86, there is a tsc(64bit long) based high pre-
cision timing function sched_clock(), but this
function of MIPS is jiffies based since although
there is a similar register($9, clock counter) in
MIPS, this counter is only 32bit long and thus
incurs frequent roll-over.

But for real time tracing, the old millisecond
level timing precision is not enough, and be-
cause the clock counter of MIPS has half of the
CPU frequency, if the main frequency of CPU
is 800MHz, the timing precision could reach
1/(400%10"6Hz) = 2.5ns. So, obviously for
RT we’d better implement a new sched_clock()
based on this counter and the according roll-
over handling needs to be consider. To avoid
influencing the other parts of linux-mips, we
only enable it for ftrace, here it is.

unsigned long long native_sched_clock(void)

{
u64 current_cycles;
static unsigned long old_jiffies;
static u64 time, old_cycles;

preempt_disable_notrace ();

/* update timestamp to avoid missing
the timer interrupt =/

if (time_before (jiffies,
old_jiffies = jiffies;
time = sched_clock ();
old_cycles = clock->cycle_last;

}

current_cycles = clock->read();

time = (time +

cyc2ns (clock,
& clock->mask));

old_cycles = current_cycles;
preempt_enable_no_resched_notrace ();

return time;

3.3.2 Porting perf_counter

“The performance counters subsystem for Linux
adds a new system call (sys_perf_counter_open) and
provides a new tool(perf) that makes use of these
new kernel capabilities. This subsystem and relative
tool is new in that it tries a new approach at inte-
grating all performance analysis related tools under
one roof.” [12]

It has similar arch-specific APIs as Oprofile, and
since Loongson has two performance counters and
its Oprofile support is provided in the kernel already
it’s easy to migrate from Oprofile. At present, this
Loongson-specific perf_counter is only implemented

old_jiffies)) {

(current_cycles - old_cycles)

in linux-2.6.29-rc6 and maybe out-of-date therefore
not suitable to be introduced any more.

3.3.3 Real Time performance tuning

It’s turn to tune the RT performance of mips-specific
RT-preempt, so suitable tuning strategies need to be
consider. When on the tuning procedure, we were
very surprised to have found the paper [3], which
gave us some very detail tuning methods, so not to
repeat that paper, here is just list of the basic strate-
gies:

1. compare compiler version
2. compare kernel versions and config options
3. tuning different latencies via kernel tracers

4. tuning via hotspots

Currently, the last step above is only a place-
holder there, no deep try yet for that method is not
that easy to enforce. The basic principle is catching
the function level hotspots via ftrace or KFT and
then getting the source code line level hotspots via
Oprofile or kgcov, at last tuning the kernel via algo-
rithm improvement, instruction sequence adjustment
and other hardware specific low-level fixups.

4 How to upstream it

We have tried our best to push the whole
MIPS/loongson-specific RT-preempt to mainline,
but up to now, only a few parts were accepted While
this sounds bad, the point is that getting patches into
main-line (kernel/MIPS or RT-preempt) require ade-
quate review by the respective subsystem maintain-
ers, testing, coding-style related fixes, documenta-
tion and its not easy to get it right the first time. So
the submissions to the respective mailing lists have
resulted in changes to the patch both content wise
and format wise, like moving it all to git - so it can be
pulled into the respective tree, which is a standard
method in the kernel development community.

This process is still on-going and has not yet re-
sulted in the proposed patches being included (but
they have not yet been kicked out either) and we
hope to get the mainline support as well as the RT-
preempt support to the upstream trees by the end of
this year.

Currently, the MIPS/Loongson2F specific RT-
preempt and ftrace,KFT kgcov are maintained in
the following git repository[11]. which also in-
clude linux-loongson kernel(>=2.6.29) for upstream:
git://dev.lemote.com/rtdls.git

5 Benchmarking

For benchmarking a wide range of tools is available
in the Linux kernel, we will not go into the details
of each and every tool but rather focus on the most
important RT benchmarking tool: cyclictest.

“cyclictest measures the delta from when it’s
scheduled to wake up from when it actually does
wake up” [4].

to cover the mostly possible application environ-
ments when benchmarking, we add different load
background as follows,

1. idle system

2. 1/0 load via about 50 “find /” background
3. Network load via “ping -f ” (ping flood)

4. X window

5. the above combination

6. X window & Mplayer(Video)

7. the above combination

and the mostly possible interval(us) options of
cyclictest are used, including 100, 200, 500, 1000,
2000, 5000, 10000. to ensure the result is more credi-
ble, all of the tests are executed 100,000 times(loops).
besides, The test thread runs in all cases with
SCHED_FIFO, priority 80 and clock_nanosleep.

cyclictest -p80 -tl1 -n -i$interval -1100000 -v
> cyclictest_$interval.log

and here lists the other testing environment for
result reproducible.

1. gee 4.4 with “-march=loongson2f”
2. binutils 2.19.1 with a patch[15] from Lemote

3. cyclictest with a patch[16]

Table 2 and picture 2 shows the statistic result.

Load Max Avg. Std.Dev.
idle 27 6.986 0.684
ping 32 8144 1.548
X 34 7.312 1.500
find 68 15.553 5.888
ping,x.find 60 15.163 5.092
x,mplayer 99 13.132 7.678
ping,x.find,mplayer 82 15.902 5.764

TABLE 2: RT-preempt testing report

the first column is the load, the following three
ones are event response times in microseconds, they
are maximal, average, and standard deviation indi-
vidually. the difference among different intervals are
not shown in this picture to avoid the table too long,
but they are coped with together(cyclictest_*.log).

g
»

> nEeE»

o 10000 20000 30000 40000 50000 0000 70000 80000 20000 1000

FIGURE 2: RT-preempt testing report

The X axes is the loops counts, the Y axes is the
event response time in microseconds.

Currently there do not seem to be any data col-
lections on RT-preempt values that allow an easy
comparison of the Loongson platform to others,
never the less we give the following references [14, 17].

6 Conclusion

The Loongson 2F has favorable hardware properties
for the use in industrial applications, its GNU/Linux
support made it well suitable for the integration into
existing projects - what was missing though is a
widely accepted and stable RTOS support, with RT-
preempt this is now available for the Loongson 2F.
Further it showed that joining an open community
like the kernel development community is not as com-
plicated as it might seem and that they are very sup-
portive, allowing an efficient and swift port to a new
architecture - which makes GNU/Linux an even more
attractive target (RT)OS for hardware companies.

While the RT aspects initially were the main fo-
cus it quickly became evident that the tooling ca-
pabilities are at least of equal importance and here
clearly the capabilities of the Linux kernel and the
RT-preempt community proved to be mature and
complete, allowing efficiency in the porting job and
in the assessment of the results.

We hope that the next generation of Loongson
CPUs (2G) will not only support RT-preempt but
find its way into mainline Linux from the very start

- this will be our next major challenge after conclud-
ing the work of up-stream integration of the current
Loongson 2F work.

7 Acknowledgment

We would like to thank the MIPS maintainer Ralf
Bechle, and the RT-preempt maintainer, Thomas
Gleixner, and also the other contributors from the
FLOSS communities, for their support and critical
review comments. Further we thank the folks at
Lemote for supporting this effort, notably Dr. Zhang
Fuxin. Last (but not least) the members of DSLab
for discussions and support for this undertaking.

References

[1] Steven Rostedt & Darren V. Hart, Internals of
the RT Patch, P161-172 of Proceedings of the
Linux Symposium, June 27-30th, 2007

[2] Michael Opdenacker, Free Electrons, 2003, Intro-
duction to rtpreempt patches

[3] Frank Rowand, November 7, 2008, Adventures In
Real-Time Performance Tuning

[4] Clark Williams, An Overview of Realtime Linux,
Redhat Summit, June 18-20th, 2008.

[5] Loongson, http://www.loongson.con

[6] FuLoong, http://www.lemote.com/english /fuloong.html
[7] RT-preempt, http://rt.wiki.kernel.org/

[8] http://www.kernel.org/pub/linux/kernel/projects/rt/

[9] http://www.ibm.com/developerworks/cn/linux/1-
Irt /partl/

[10] http://www.ibm.com/developerworks/cn/linux/1-
Irt /part2/

[11] http://dev.]emote.com/code/rt4ls

[12] perf_counter(v8), http://lwn.net/Articles/336542/

[13] ftrace, Documentation/ftrace.txt

[14] cyclictest, http://rt.wiki.kernel.org/index.php/Cyclictest

[15] http://groups.google.com/group/archlinux-for-
loongson/web/binutils-2.19.1-loongson2f-3.patch

[16] http://dev.lemote.com/code/rt4ls/raw-
attachment/wiki/WikiStart/0001-cyclictest-
ensure-it-work-with-glibe-2.7-in-linux-M.patch

[17] http://rt.wiki.kernel.org/index.php/ CONFIG_ PREEMPT_RT

