SIL4Linux: An attempt to explore Linux satisfying SIL4 in some

restrictive conditions

Lijuan Wang, Chuande Zhang, Zhangjin Wu, Nicolas Mc Guire and Qingguo Zhou

Distributed and Embedded System Lab
School of Information Science and Engineering Lanzhou University
Tianshui South Road 222,Lanzhou,P.R.C
zhangchd.lzu.edu@gmail.com

Abstract

Linux is an existing widely-used operating system in lots of fields, including desktop applications,
server solutions, embedded systems and even some real time controlling environment with the rt-preempt
extensions. And it works well without any big problem currently, but for it is a complex and large system,
some potential uncertain factors may influence its stability, so there is no guarantee to use it in some

safety-critical environment.

In this paper, we will try to explore the possibility of Linux satisfying SIL 4 in some restrictive condi-
tions. To achieve such a goal, a sildlinux system have been designed and implemented via integrating
some kernel tracing/profiling tools, two formal analyzing methods, and with the support of a DBMS.

1 Introduction

In the modern world mankind depends on quite a
number of safety-critical systems. Sometimes this
dependability is obvious as on the subject of air-
craft construction and sometimes it is hidden in
tiny embedded systems like ones that trigger a fire
alarm. Reference[l] states requirements to safe op-
erating systems assessing Linux for safety related
systems. Reference[2] point out some main issue of
using COTS/OSS software in the context of 61508
compliant safety related systems, and also it is the
initial idea of the whole SIL4linux project.

The SIL4linux project is attempt to find some avail-
able methods to explore the possibility that Linux is
suitable for use in many safety related applications
with SIL 4 integrity requirements.

In this article, we outline an architecture of the
primary step of the sil4linux system, and its imple-
mentation, usage,related tools and try to outline the
possible method to progress on the whole project. It
should be noted that this paper just gives the first
step of the SIL4Linux project to explore the possi-
bility of using Linux or modified versions of Linux

for SIL 4 applications.

2 Background

Before showing what and how we have done on the
SIL4Linux project, we should interpret some basic
concepts. The following sections will introduce SIL,
SIL4, FMEA and FTA.

2.1 SIL

A SIL[3] is a measure of safety system performance,
or probability of failure on demand (PFD) for a SIF
or SIS. There are four discrete integrity levels asso-
ciated with SIL. Both ISA and IEC have agreed that
there are three categories: SIL 1, 2 and 3. IEC also
includes an additional level SIL 4 that ISA does not.
The higher the SIL level, the lower the probability of
failure on demand for the safety system and the bet-
ter the system performance. SIL 4[3] is the highest
level of risk reduction that can be obtained through
a Safety Instrumented System.

2.2 FMEA

FMEA[4] is a procedure for analysis of potential fail-
ure modes within a system for classification by sever-
ity or determination of the effect of failures on the
system. Its functions as following:

e Recognize and evaluate the potential failure of
a product/process and the effects of the failure.

e Identify actions that could eliminate or reduce
the chance of the potential failure occurring.

e Complementary to the process of defining what
a design or process must do to satisfy the cus-
tomers.

2.3 FTA

FTA is
e an analysis method with Fault Tree

e an analysis to display the relationship of differ-
ent fault

e a deductive method from top-level event not
inductive

3 Put Linux in some restrictive
conditions

For Linux is very complex and large, we need put
it in some specific conditions: specific applications
(including specific configuration, arguments and en-
vironments) with specific kernel executing paths in
kernel internal. For describing it more conveniently,
the basic GNU/Linux architecture is shown in Fig-
urel.

GNU C Library

1System Call Inter‘face‘— — — —

User space

GNU/Linux
_ _— 4 - _1hardware interface| v
hardware
FIGURE 1: Basic GNU/Linux architec-

ture

When running the specific applications, which
with relative arguments and configuration in a given
environment, the system calls triggered directly by
the applications or indirectly via libs will be fixed.
And the kernel functions called by the system calls
will also be fixed, and the same as the hardware-
interfaces. The system calls triggered by the appli-
cations can be traced by strace, and the calling paths
from the system calls to the hardware-interfaces can
be traced by some kernel tracing tools such as kft[5],
ftrace[6]. And if we map the system calls and kernel
functions to the relative source code files via some
tools like ctags, we can analyze them via some for-
mal tools. And further, if we running the applica-
tion enough times and profile the kernel in source
code line level, we will trace the most-often executed
lines or blocks(several lines together) of the source
code in the kernel functions, and then the hotspots
to evaluate will be shorted. There is really such a
tool for profiling kernel, it is kgcov[7], and the user-
space tool gcov[8] can help us map the profiling re-
sult to the source code files for further analyzing like
the autoctags does. The tools and their functions as
following:

e autostrace: find out the system calls called by
the applications

e autokft: trace all of kernel functions called by
the system calls

e autoctags: find out the source code files who
defines the relative kernel functions in the path
of the Linux kernel directory

e autokgcov: test the coverage of the code in the
kernel functions(kernel space)

e autogcov: test the coverage of the code in the
kernel functions(user space)

Come to whole sil4linux sys-
tem

The formal two parts have introduced the principle
of our sil4linux project, now a whole sil4linux will
be discussed, including the design architecture, im-
plementation and usage.

4.1 System architecture

The whole system architecture is given in figure 2 to
emphasize the main components in the system.

Applications

autostrace

System calls

K . autokft
Kernel functions
autoctags
L Stat T autokgcov
’ anguage Statemen s‘ ! autogcov

Linux Kernel

Roboticized tools code coverage

Database System | calling tree

system calls
Structured Query Language

Analytical methods¢

[

FTA report

SIL4 Report

FMEA report

FIGURE 2: sil4linuz architecture

In the above architecture,there are four parts:
e Roboticized tools
e Database system
o Interface
e Result report

The roboticized tools are autostrace, autokft,
autoctags, autogcov, autokgcov. All the tools and
their functions have presented in section 3.

As the goal of the SIL4Linux project is trying to
provide information about the possibility of using
Linux for SIL4 application. But as we know, Linux
kernel is too complex to be analyzed directly. So we
should try to find out a representative sub-collection
of it and then analyze it. For the whole structure
of Linux like a “big” tree, and it’s too big to be an-
alyzed directly. However, if some methods can find
out the representative trees appear frequently (per-
haps relative with the special application area), then
just analyze some of these trees. So if using some
special test-suites which cover most of the system
calls, and do enough numbers of tracing with strace,
kft and gcov as many as possible, then may get the
representative trees. And there is really such a test-
suites named POSIX test-suite. The Open POSIX

Test Suite is an open source test suite with the goal
of performing conformance, functional, stress, and
performance testing of the functions described in the
IEEE Std 1003.1-2001 System Interfaces specifica-
tion[9].

4.2 System design
4.2.1 Database design

To save the result of all the tools, by selecting a
database management system(this project use Post-
greSQL), and using SQL to do some relative statistic
and analyzing.

what need save including the experiment environ-
ment, the system calls, the kernel functions, the call-
ing trees of the system calls, the program parts(code
blocks) of the kernel functions, and some relative
information, such as the the files who define the rel-
ative functions. So we design a database named sil4
with different tables to store the above information.

4.2.2 Interfaces design

For simplifying the operation of the SIL evaluating
procedure, two different interfaces have been de-
signed, one is the command line interface, another is
the web-based interface.

1. CLI interface. In CLI interface, we have
two main script kft_query and gcov_query.
kft_query is a shell script which designed
to query the kft relative tables in the sil4
database, it including

e list all of the system calls

e list the the source code files(in Linux ker-
nel) who define the system calls

e list the calling trees called by the system
calls

gcov_query is a tool for searching the Geov rel-
ative information, mainly used to search three
different types of source code of the kernel
functions.

2. Web Interface. We can access the data which
selected from sil4 project via web-based inter-
face by provide a user name and password to
login.

4.3 Implementation

The implementation includes several parts:

e the implementation of automatic tools in the
system architectures: autostrace, autokft, au-
toctags, autokgcov, autogcov. These have been
discussed in the above parts.

e the implementation of the database system:
here using PostgreSQL DBMS to manage
the database. PostgreSQL[10] is an object-
relational database system that has the fea-
tures of traditional commercial database sys-
tems with enhancements to be found in next-
generation DBMS systems. And PostgreSQL is
free and the complete source code is available.

e the implementation of the interface which have
shown in the above part.

And the following picture will show some results
of our sil4linux project.

system calls of 2.6.25-rc3

Systen Calls Trace ResultsCall TreesMax time Min tire |
5¥5_access 100 41625 5
sys alarm 100 1002458
sys_brk 100 124
sys_clock getres 100 861230
sys_clock gettime 100
sys_clock nanosleep 100
sys_clock settime 100
sys_clone 100
sys_close 100
sys_dup 100
sys_dup2 100
5¥5_execve 100
svs exit 100
S¥s_exit group 100
sys_fent164 100
sys fstatbd 100

FIGURE 3: a part of system calls of Linux
kernel 2.6.28-r3

From the above figure, you can get information about
the system calls, trace result, call trees, Max time,
Min time, Average time and standard deviation
time. When click the call trees of sys_geteuid32, the
information is shown in the following figure.

&

1460.52 545.90
10493.89 9977.25
5.78 1.22
20936.44 10368, 27
16834.29 10654.61
417.53 364.70
8875.97 5149.04
10138.87 654.52
793.71 385.52
1246.89 633.70
4348.23 1037.64
16716.40 819.92
123840.90 20348. 30

5]

9 19 2 [
B3 1R 12

i 1=
-
51
o=
=
Sig

PR

1=
I
I
5
=
F
3
E]

=
=
=
=
<
S
3

oo‘w‘u)‘
S151E

2!

T,
e
@[
o=
=
oo 01
&

&

=
S
&
&
=
o
5
]
4

=
a
1
s
3
-
5
9
Gt

2472477 925.36
2856.36 874
33.11 11.92

(SI5]
=
=
B

&
o

tree 2009:

ta sys fentlbd
ta sys fentlbd

[el
[e]
Delta | fget
[e]
Lel
[e]

| do fentl
ta | | gzet close on exec
|

fput

FIGURE 4: trees of sys_geteuid32

4.4 Usage

Before evaluating the kernel whether satisfying SIL
4, there are some procedure need do at first. First,
need to install sil4linux system and basic tools, such
as gece, python, PostgreSQL, apache, ctags, posix-
testsuite and so on. And some special tools such as
FMEA, FTA, gcov, kft, strace and so on. Second,
we need to run autostrace, autokft, autoctags and
autogcov. Then import the result to the database.
Because we have create tables in the database, we
only run the relative script to import different result
files to the database. Third, we need script to access
all results via command line interface and web-based
interface. Finally, we can analyze results in the for-
mal method.

5 The extra functions sil4linux
can do

The extra functions the sil4linux can do including;:

e it can help for Linux kernel study and develop-
ment like LXR[11] does.

e guides for Linux kernel performance tunning
in some specific application, for example, run-
ning Baidu or Google Spider in Linux, and run
sildlinux for it, and then tunning Linux kernel
for running Baidu & Google Spider quicker.

e some other potential database dig, such as
compare the different system features when
enabling/disabling kernel configuration, when
migrating Linux kernel from a version to an-
other and so forth.

6 Conclusions

In the modern world we live nowadays, mankind de-
pends on a variety of technical highly sophisticated
systems. And the operating system Linux and its
kernel is well known and used in thousands of desk-
top computers, servers and embedded systems all
over the world. The thesis gave a possibility of as-
sessing Linux satisfying SIL 4 applications in some
restrictive conditions. It would be useful to provide
a method that it is possible for Linux would meet
a SIL 4 integrity requirement. And SIL4Linux is a
project for finding out some available informations
to use Linux for SIL4 applications under some re-
strictive conditions. At last, a archetypal method
based on some formal methods, like FMEA, FTA
have been designed.

7 Acknowledge

At first, it is very grateful of M. Sc Wu Zhangjin for
his great contribution to sil4linux. His work makes
all of us know more about SIL 4, KFT, GCOV, Linux
kernel, shell script, debugging tools. Thanks a lot
to Prof. Nicholas Mc Guire, Dr. Zhou Qingguo and
all the other people of DSLab for their discussion
on SIL 4 questions. This work was supported by
Siemens.

8 Acronyms

e CLI - Command Line Interface

e COTS - Commercial Off The Shelf

e DBMS - DataBase Management System

e FMEA - Failure Modes and Effects Analysis
e FTA - Fault Tree Analysis

e GCOV - test COVerage program for Gnu cc

e IEC - International Electro-technical Commis-
sion

e ISA - Instrument Society of America

e KFT - Kernel Function Trace

e LXR - Linux Cross Reference

e OSS - Open Source Software

e PFD - Probability of Failure of Demand

RRF - Risk Reduction Factor

SIL - Safety Integrity Level

SIF - Safety Instrumented Function
SIS - Safety Instrumented Systems

SQL - Structure Query Language

References

[1]

intr, H.R. Pierce, Preliminary Assessment of
Linux for safety related systems,Research Re-
port 011, 2002, HSE, ISBN: 0 7176 2538 9.

Nicholas Mc Guire, Linuz for Safety Critical Sys-
tems in IEC61508 Context,2007

http://www.gmsystemsgroup.com/sil/sil faqs.html

http://en.wikipedia.org
/wiki/Failure_mode_and_effects_analysis

http://tree.celinuxforum.org/CelfPubWiki
/KernelFunctionTrace

http://linux.die.net/man/1/ftrace
http://oss.lzu.edu.cn/blog/article.php?tid 2028 html
http://gcc.gnu.org/onlinedocs/gee/Geov.html
http://posixtest.sourceforge.net/
http://en.wikipedia.org/wiki/PostgreSQL

http://Ixr.linux.no/

