
Latency_nice
Implementation and Use-case for Scheduler Optimization

Parth Shah <parth@linux.ibm.com> IBM
Chris Hyser <chris.hyser@oracle.com> Oracle

Dietmar Eggemann <dietmar.eggemann@arm.com> Arm

mailto:parth@linux.ibm.com
mailto:parth@linux.ibm.com
mailto:parth@linux.ibm.com

Agenda

• Design & Implementation
• per-task
• Privileges
• per-cgroup

l Use-cases
l Scalability in Scheduler Idle CPU Search Path

l EAS

l TurboSched - task packing latency nice > 0 tasks
l Idle gating in presence of latency-nice < 0 tasks

Design & Implementation

1) per-task
2) privileges
3) per-cgroup

per-task

• What it describes?
• Analogues to task NICE value but for latency hints
• Per-task attribute (syscall, cgroup, etc. Interface may be used)
• A relative value :
• Range = [-20, 19]
• Low latency requirements = higher value compared to other tasks
• value = -20 : task is latency sensitive
• Value = 19 : task does not care for latency at all
• Default value = 0

• Proposed Interface in review: sched_setattr() existing syscall

https://lkml.org/lkml/2019/9/30/215

https://lkml.org/lkml/2019/9/30/215

Privileges
• Can non-root user decrease value of latency_nice?

• i.e., can the task be promoted to have indicate lower latency requirements?
• Use CAP_SYS_NICE capability to restrict non-root user lower the value. This makes it

analogues to task NICE.
• Pros:

• Only System Admin can promote the task
• A task once demoted by Admin, user no longer can promote it. Mitigates DoS attacks.

• Cons:
• A user cannot lower the value of owned tasks.
• A user once increased the value cannot set its value to the default 0.

• Use-cases already in discussion:
• Reduce core-scan search for latency sensitive tasks
• Pack latency tolerant tasks on fewer CPUs to save energy (EAS/TurboSched)

• Ideas in the community:
• Be conservative: Introduce this capability based on the use-case introduced
• Currently, none of the proposed use-case allows DoS like attacks

https://lkml.org/lkml/2020/2/28/

https://lkml.org/lkml/2020/2/28/166

per-cgroup - why?

• prefer-idle feature – bias CPU selection towards the least busy one to improve wakeup latency

• Pixel4 (v4.14 based)

none on /dev/stune type cgroup (rw,nosuid,nodev,noexec,relatime,schedtune)

flame:/ # find /dev/stune/ -name schedtune.prefer_idle
./foreground/schedtune.prefer_idle 1
./rt/schedtune.prefer_idle 0

./camera-daemon/schedtune.prefer_idle 1

./top-app/schedtune.prefer_idle 1

./background/schedtune.prefer_idle 0

per-cgroup - definition

l cgroup

l mechanism to organize processes hierarchically & distribute system resources along the hierarchy

l resource distribution models:

l weight: [1, 100, 10000], symmetric multiplicative biases in both directions

l limit: [0, max], child can only consume up to the configured amount of the resource

l protection: [0, max], cgroup is protected up to the configured amount of the resource

l CPU controller

l regulates distribution of CPU cycles (time, bandwidth) as system resource

l absolute bandwidth limit for CFS and absolute bandwidth allocation for RT

l utilization clamping (boosting/capping) to e.g. hint schedutil about desired min/max frequency

per-cgroup - cpu controller - nice & shares

l sched_prio_to_weight[40] = { 88761 (-20), ... 1024 (0), ... 15 (19) }

l nice to weight: weight = 1024/(1.25)^(nice)

l relative values affect the proportion of CPU time (weight)

/
(root)

AB

D

p0p1p2

Cp3 10242048

1024

3 (nice)-20

0

p4 0

shares [2...1024...1 << 18] (cgroup v1)

weight [1...100...10000] (cgroup v2)

weight.nice [-20...0...19] (cgroup v2)

1024

1024

per-cgroup - cpu controller - uclamp.min/max

l task effective value restricted by task (user req), cgroup hierarchy & system-wide setting

l clamping is boosting (protection) via uclamp.min & capping (limit) via uclamp.max

/
(root)

AB

D

p0p1p2

Cp3

p4

/proc/sys/kernel/
sched_util_clamp_max: 896 (default 1024)
sched_util_clamp_min: 128 (default 1024)

768/768 (max requested/max effected value)
256/128 (min requested/min effected value)

1024/896
0/128

1024/896
0/128

640/640
384/128

1024/768
0/128

1024/896
0/128

512/512
512/128

1024/640
0/128

1024/768
0/128

per-cgroup - cpu controller - latency nice ?

l system resource has to be CPU cycles

l resource distribution model: limit would work for negative latency_nice values [-20, 0]

l update (aggregation) – where ?

/
(root)

AB

D

p0p1p2

Cp3

p4 -2 / -2 (requested / effected value)

-10 / -10

-5 / -10

/proc/sys/kernel/sched_latency_nice: 0 (default 0)

0 / 0 0 / 0

0 / 0 0 / -2

0 / -2 0 / -10

Use cases
1) Scheduler Scalability (ORACLE)
2) EAS (Android)
3) TurboSched (IBM)
4) IDLE gating (IBM)

Scalability in Scheduler Idle CPU Search Path

l Patchset author identified CFS 2nd-level scheduling domain idle cpu search as

source of wakeup latency

- Skipping search for certain processes improved TPCC by 1%.

- Certain critical communication processes are very short-lived and sensitive to latencies

- Real-time avoided because of interop issues with cgroups

l Start by understanding scope of problem

- Some number of 100% cpu bound load processes to fill queues

- Target process (running at desired latency nice value) and measuring process

l Target does eventfd_read()

l Measurer grabs TSC, does eventfd_write()

l Target wakes and grabs TSC (in same socket)

l Target communicates value back to measurer

Is Skipping the Search Visible?
(Early Experiment Numbers)

EAS

• prefer_idle replacement
• avoid latency from using Energy Model (EM) for certain taskgroups
• look for idle CPUs/best fit CPU for latency_nice = -1 tasks instead
• latency_nice = [-1, 0] [don't use EM, use EM]

• Testcase
• test UI performance with Jankbench
• measure number of dropped or delayed frames (jank)

TurboSched: Task packing
• Discussed at OSPM-III

• Pack small background tasks on fewer cores.

• This reduces power consumption => allows busy core to sustain/boost Turbo frequencies for longer

durations.

• small background tasks:

- P->latency_nice > 15 && task_util(p) < 12.5%
• Result

- Spawn 8 important tasks

- Spawn 8 small noisy tasks waking up randomly doing while(1) with latency_nice= 19

- Noisy tasks get packed on busier cores, channeling power to other cores by maintaining power budget

- This boosts busier cores to higher frequency

- Seen upto 14% performance benefit in throughput for important tasks

https://lkml.org/lkml/2020/1/21/39

https://lkml.org/lkml/2020/1/21/39

IDLE gating in presence of latency-nice<0 tasks
• PM_QoS:

• Restrict IDLE states based on exit_latency

• Its per-device or system-wide configuration

• No per-task control mechanism

• Problem gets intense with multi-core multi-thread systems

• Latency_nice can hint CPUs on latency sensitive tasks

• Implementation:

• per-cpu counter to track latency sensitive tasks

• Increase/decrease this counter upon task entering/exiting scheduler domain

• Restrict the call to CPUIDLE governor if any latency-sensitive tasks exists

• Benefits:

• Only the CPU executing latency_sensitive marked tasks won't go idle
• Other CPUs still goes to IDLE states based on CPUIDLE governor decision

• Best for performance, by cutting IDLE states latency

• Better than disabling all IDLE states

• Allows Turbo frequency to boost by saving power on IDLE CPUs

https://lkml.org/lkml/2020/5/7/577

Results: schbench

Benchmarks:
• v1:

• schbench –r 30
• v2:

• schbench –m 2 –t 1

% values are w.r.t. Baseline

Results: pgbench

% values are w.r.t. Baseline

Baseline cpupower idle-set –D 10 w/ patch
Latency avg. (ms) 2.028 0.424 (-80%) 1.202 (-40%)

Latency stddev 3.149 0.473 0.234

Trans. completed 294 304 (+3%) 300 (+2%)

Avg. Energy (Watts) 23.6 42.5 (+80%) 26.5 (+20%)

Baseline cpupower idle-set –D 10 w/ patch
Latency avg. (ms) 1.292 0.282 (-78%) 0.237 (-81%)

Latency stddev 0.572 0.126 0.116

Trans. completed 294 268 (-8%) 315 (+7%)

Avg. Energy (Watts) 9.8 29.6 (+30.2%) 27.7 (+282%)

44 Clients running in parallel
$> pgbench –T 30 –S –n –R 10 –c 44

1 Client running
$> pgbench –T 30 –S –n –R 10 –c 1

Legal Statement

• This work represents the view of the authors and does not necessarily
represent the view of the employers (IBM Corporation).
• IBM and IBM (Logo) are trademarks or registered trademarks of

International Business Machines in United States and/or other
countries.
• Linux is a registered trademark of Linus Torvalds.
• Other company, product and service names may be trademarks or

service marks of others.

References

1. Introduce per-task latency_nice for scheduler hints, https://lkml.org/lkml/2020/2/28/166

2. Usecases for the per-task latency-nice attribute, https://lkml.org/lkml/2019/9/30/215

3. TurboSched RFC v6, https://lkml.org/lkml/2020/1/21/39
4. Task latency-nice, https://lkml.org/lkml/2020/1/21/39

5. IDLE gating in presence of latency-sensitive tasks, https://lkml.org/lkml/2020/5/7/577
6. ChromeOS usecase, https://lkml.org/lkml/2020/4/20/1353

https://lkml.org/lkml/2020/2/28/166
https://lkml.org/lkml/2019/9/30/215%E2%80%8B
https://lkml.org/lkml/2020/1/21/39
https://lkml.org/lkml/2020/1/21/39
https://lkml.org/lkml/2020/5/7/577
https://lkml.org/lkml/2020/4/20/1353

