
Lachesis: a testsuite for Linux based real-time systems

Andrea Claudi

Università Politecnica delle Marche, Department of Ingegneria dell’Informazione (DII)
Via Brecce Bianche, 60131 Ancona, Italy

a.claudi@univpm.it

Aldo Franco Dragoni

Università Politecnica delle Marche, Department of Ingegneria dell’Informazione (DII)
Via Brecce Bianche, 60131 Ancona, Italy

a.f.dragoni@univpm.it

Abstract

Testing is a key step in software development cycle. Error and bug fixing costs can significantly affect
development costs without a full and comprehensive test on the system.

First efforts to introduce real-time features in the Linux kernel are now more than ten years old.
Nevertheless, no comprehensive testsuites is able to assess the functionality or the conformance to the
real-time operating systems standards of the Linux kernel and of real-time nanokernels that rely on it.

In this paper we propose Lachesis, an automated testsuite derived from the LTP (Linux Test Project)
real-time tests. Lachesis is designed with portability and extensibility as main goals, and it can be used
to test Linux, PREEMPT RT, RTAI and Xenomai real-time features and performances. It provides some
tests for SCHED DEADLINE patch, too. Lachesis is now under active development, and more tests are
planned to be added in the near future.

1 Introduction

Linux kernel is being increasingly used in a wide vari-
ety of contexts, from desktops to smartphones, from
laptops to robots. The use of Linux is rapidly grow-
ing due to its reliability and robustness.

Thanks to these qualities, Linux is widely used
in safety and mission critical systems, too. In these
contexts, time is extremely important: these systems
must meet their temporal requirements in every fail-
ure and fault scenario. A system where the correct-
ness of an operation depends upon the time in which
the operation is completed is called a real-time sys-
tem.

Over the years various solutions have been pro-
posed to adapt the Linux kernel to real-time require-
ments. Each of them has found extensive applica-
tions in production environments. Some of these so-
lutions, like PREEMPT RT [1] and, more recently,
IRMOS [2] and SCHED DEADLINE [3], are based

on a real-time patch to the Linux kernel, which in-
troduces or improves some essential features for a
real-time operating system.

Other solutions use a real-time nanokernel in
parallel with the Linux kernel. This is made possi-
ble through the use of an hardware abstraction layer
on top of the hardware devices, that listens for in-
terrupts and dispatches them to the kernel respon-
sible for managing them. RTAI [4] and Xenomai [5]
nanokernels, both built on the top of Adeos [6] hard-
ware abstraction layer, belong to this category.

Although first efforts to enhance and introduce
real-time features in the Linux kernel are now more
than ten years old, nowadays there are no compre-
hensive testsuites able to assess the functionality or
the conformance to the real-time operating systems
standards for the Linux kernel and for the nanoker-
nels that rely on it.

Properly testing the Linux kernel is not easy,
since the code base is continuously growing and in

1



rapid evolution. We need more efficient, effective and
comprehensive test methods, able to ensure proper
software behaviour in the wide range of situations
where systems can be deployed. For example, tests
are critical in an environment where a malfunction-
ing system can seriously damage machinery, struc-
tures or even human life.

Nowadays there are many automatic testsuites,
covering an increasingly wide range of kernel fea-
tures. Many of these testsuites make it possible
to functionally test file systems and network stack,
to evaluate efficiency in memory management and
in communication between processes, and to assess
standards compliance. Very few of them make func-
tional testing on real-time features, and none of them
test performances or conformance with real-time fea-
tures.

1.1 Paper contributions

In this paper we propose Lachesis, an automated
testsuite for Linux based real-time systems, derived
from the LTP real-time tests. Lachesis main goals
are:

• to provide extensive and comprehensive testing
of real-time Linux kernel features

• to provide a common test environment for dif-
ferent Linux based real-time systems

• to provide a set of functional, regression, per-
formance and stress test, either developing or
porting them from other testsuites

• to design and experiment a series of build tests

• to minimize development time for new tests

• to make the testsuite extensible and portable

Several real-time tests were ported to Lachesis
from other testsuites. In this paper we also detail
porting procedures and results.

1.2 Paper structure

The rest of this paper is organized as follow: section
2 illustrates a taxonomy for testing methodologies;
section 3 briefly introduces the most important test-
suites for the Linux kernel and give some reasons
why to choose LTP as start point to develop a new
real-time testsuite; Section 4 illustrates Lachesis and
the tests it includes; Section 5, finally concludes the
paper.

2 Taxonomy of testing method-

ologies

In software engineering, testing is the process of vali-
dation, verification and reliability measurement that
ensure the software to work as expected and to meet
requirements.

The Linux kernel has been tested since its intro-
duction. In the early stage of development tests were
ad-hoc and very informal: every developer individu-
ally conducted tests on the portion of code he devel-
oped, with his own methodologies and techniques;
frequently tests came after end-users bug reports,
and were aimed at resolving the problem, identify-
ing the section of code causing it.

Over the years kernel grew across many differ-
ent architectures and platforms. Testing activities
became increasingly difficult and costly in terms of
time, but remained very critical for kernel reliability,
robustness and stability.

For this reason different testing methodologies
and techniques for the Linux kernel were experi-
mented and used. Indicatively, these methods can
be grouped into seven categories [7].

2.1 Built-in debugging options

This kind of tests must not be done simultaneously
with functional and performance tests. It consists in
a series of debugging options (CONFIG DEBUG *
in the Linux kernel) and fault insertion routines that
allow the kernel to test itself.

2.2 Build tests

Build tests just compile the kernel code searching for
warnings and errors from the compiler. This kind of
tests is an extensive problem, for a number of differ-
ent reasons:

• Different architectures to build for;

• Different configuration options that could be
used;

• Different toolchains to build with;

2.3 Static verification tests

This kind of tests is designed to find bugs in the code
without having to execute it. Static verification tests

2



examine the code statically with tools like sparse,
LClint [8] (later renamed as splint), and BLAST [9].

2.4 Functional and unit tests

Functional and unit tests are conceived to examine
one specific system functionality. The code imple-
menting a feature is tested in isolation, to ensure it
meets some requirement for the implemented specific
operation. Crashme [10] is an example of this kind
of test.

2.5 Regression tests

Regression tests are designed to uncover new er-
rors and bugs in existing functionalities after changes
made on software, such as new features introduction
or patches correcting old bugs. The goal for this kind
of tests is to assure that a change did not introduce
new errors.

Regression testing methods are different, but in
general consist in rerunning previously ran tests and
evaluating system behaviour, checking whether new
errors appear or old errors re-emerge.

2.6 Performance tests

Performance tests measure the relative performance
of a specific workload on a certain system. They
produce data sets and comparisons between tests, al-
lowing to identify performance changes or to confirm
that no changes has happened. In this category we
can include kernbench, a tool for CPU performance
tests; iobench, a tool for disk performance tests; and
netperf, a tool to test network performance.

2.7 Stress tests

Stress tests push the system to the limits of its capa-
bilities, trying to identify anomalous behaviours. A
test of this kind can be conceived as an highly parallel
task, such as a completely parallelized matrix multi-
plication. A performance test running under heavy
memory pressure (such as running with a small phys-
ical memory), or in a highly resource-competitive en-
vironment (competing with many other tasks to ac-
cess the CPU, for example) can become a stress test.

3 Automated testsuites

Testing is expensive, both in terms of costs and time.
Automation is a good way to reduce economic and
human efforts on testing. A number of automated
testing environments for the Linux kernel has been
proposed, each with its own strengths and weak-
nesses.

In the following paragraphs the most impor-
tant test suites for the Linux kernel are presented.
Goals and basic concepts which guide their design
are stated.

3.1 IBM autobench

IBM autobench is an open source test harness1 con-
ceived to supports build and system boot tests, along
with support for profiling [7]. It is written in a com-
bination of perl and shell scripts, and it is fairly com-
prehensive.

Autobench can set up a test execution environ-
ment, perform various tests on the system, and write
logs of statistical data. Tests can be executed in par-
allel, but test control support is basic and the user
have almost no control over the way tests are exe-
cuted. Error handling includes the success or failure
of the tests, but is a very complex activity and must
be done explicitly in all cases. In addition the use
of different languages limits testsuite’s extensibility
and maintainability.

IBM autobench project is inactive since 2004,
when the last version was released.

3.2 Autotest

Autotest is an open source test harness capable of
running as a standalone client. It is easy to plug
it into an existing server harness [11], too. Au-
totest provides a large number of tests, including
functional, stress, performance, regression and ker-
nel build tests. It supports various profilers, too.

Autotest is written in python, which enables it
to provide an object oriented and clean design. In
this way testsuite is easy to extend and maintain.
Including python syntax in job control file, for ex-
ample, users can take more control on test execution.
On the other hand, python is not widely used in the
real-time community, and is not suited for real-time
tests or applications development.

1A test harness is an automated test framework designed to perform a series of tests on a program unit in different operating
conditions and load, monitor the behaviour of the system and compare the test results with a given range of good values.

3



Autotest has built-in error handling support.
Tests produce machine parsable logs; their exit sta-
tus are consistent and a descriptive message of them
is provided. A parser is built into the server har-
ness, with the task of summarizing test execution
results from different testers, and formatting them
in an easy consultation form.

Autotest includes very few tests to examine the
Linux kernel from a real-time point of view; almost
all of them are functional tests. Moreover, it does not
include any compliance test on real-time standards.

3.3 Crackerjack

Crackerjack is a testsuite whose main goal is regres-
sion testing [12]. It provides:

• automatic assessment of kernel behaviours

• test results storage and analysis

• incompatibilities notification

• test result and expected test result manage-
ment (register, modify, remove)

Crackerjack is initially developed to test Linux ker-
nel system calls, but over time has been revised to
easy future extension to other operating systems.

It is implemented using Ruby on Rails. This
makes it easy to modify it, ensuring a low mainte-
nance cost and simplifying development of new tests.
However, as for python, Ruby is not suited for real-
time tests or applications development.

Crackerjack integrates a branch tracer for the
Linux kernel, called btrax. Btrax is a tool to anal-
yse programs effectiveness. Crackerjack uses btrax to
trace the branch executions of the target program, to
analyse the trace log file, and to display data about
coverage and execution path. btrax makes use of
Intel processors’ branch trace capabilities, recording
how much code was tested.

Crackerjack does not support conformance, per-
formance or stress tests, and does not include any
functional test on real-time features.

3.4 rt-tests

rt-tests [13] is a popular testsuite developed to test
the PREEMPT RT patch to the Linux kernel. It is
developed by Thomas Gleixner and Clark Williams,
and it is used in the OSADL lab, across various hard-
ware architectures, for a continuous testing. rt-tests
includes ten different tests for real-time features.

cyclictest [14], for example, is a well known test
that measures the latency of cyclic timer interrupts.
Through command line options, the user can choose
to pin the measurement thread to a particular core
of a multi-core system, or to run one thread per core.
Cyclictest works by creating one or more user space
periodic thread, the period being specified by the
user. The accuracy of the measurement is ensured
by using different timing mechanism.

Another interesting test is hackbench. It is both
a benchmark and a stress test for the Linux kernel
scheduler. Hackbench creates a specified number of
pairs of schedulable entities which communicate via
socket. It measures how long it takes for each pair
to send data back and forth.

rt-tests is a good and well established suite to
test Linux kernel real-time features. However it is
conceived primarily to test the PREEMPT RT patch
set, so it’s quite difficult to extend it to other Linux
based real-time systems. For example, it contains a
couple of tests based on a driver for the Linux kernel;
in systems such as Xenomai, the use of a driver as
this causes a mode change in which a real-time task
switch from the Xenomai to the Linux environment.
Thus, the task experiences much longer latencies.

Test results are outputted in a statistical sum-
mary, rather than in a boolean ”PASS” or ”FAIL”.
Unfortunately rt-tests do not provide any mechanism
for collecting the results and present them in a ma-
chine parsable form.

3.5 LTP - Linux Test Project

LTP (Linux Test Project) is a functional and regres-
sion testsuite [15]. It contains more than 3000 test
cases to test much of the functionalities of the ker-
nel, and the number of tests is increasingly growing.
LTP is written almost entirely in C, except for some
shell scripts.

In recent years LTP has been increasingly used
by kernel developers and testers and today is almost
a de-facto standard to test the Linux kernel [16] [17].
Linux distributors use LTP, too, and contributes en-
hancements, bug fixes and new tests back to the
suite.

LTP excellence is testing Linux kernel basic func-
tionality, generating sufficient stress from the test
cases. LTP is able to test and stress filesystems, de-
vice drivers, memory management, scheduler, disk
I/O, networking, system calls and IPC and provides
a good number of scripts to generate heavy load on
the system.

4



It also provides some additional testsuites such
as pounder, kdump, open-hpi, open-posix, code cov-
erage [18], and others.

LTP lacks support for profiling, build and boot
tests. Even if it contains a complete set of tests, LTP
is not a general heavy weight testing client.

LTP also lacks support for machine parsable logs.
Test results can be formatted as HTML pages, but
they are either “PASS” or “FAIL”, and for tester
is more complex to understand the reasons behind
failures.

LTP has a particularly interesting real-time test-
suite, that provides functional, performance and
stress tests on the Linux kernel real-time features.
To the best of our knowledge, LTP is one of the few
testsuites that provides such a comprehensive and
full featured set of tests for Linux real-time func-
tionalities.

4 Lachesis

All analysed testsuites seem to suffer some key fail-
ings in relation to testing the Linux kernel real-time
features.

Many of them seem to have little consideration
for real-time features in the Linux kernel. A great
part of them (with the notable exception of LTP and
rt-tests) does not offer any real-time functional, per-
formance or stress test.

Usually it is simple to design and develop a new
test inside an existing testsuite. However it is very
difficult to extend an entire testsuite in order to
test some new real-time nanokernels. System calls
analysed in tests, in fact, may differ syntactically
from one kernel to another maintaining the same
functionality. Moreover some nanokernels, such as
RTAI and Xenomai, provides some real-time features
through additional system calls, for which specific
tests should be developed.

Another problem is the lack of machine parsable
results. There is no standard way to consistently
communicate results to the user; often we have not
any detail on the reason that led a test to failure.

Lastly, every testsuites has grown rapidly and
chaotically in response to the evolution of the Linux
kernel. For this reason they are not easy to under-
stand, maintain and extend.

The lack of a comprehensive testsuite to meet
previously exposed needs led us to develop Lachesis.

The ambitious goal of Lachesis is to provide a

common test environment for different Linux based
real-time systems. Therefore it seems reasonable to
start from an existing, accepted and widely used test-
suite, to adopt its principles and apply them to a new
testsuite, conceived with other goals and priorities.

We choose LTP as a starting point for Lachesis.
There are many reasons behind this choice. First,
LTP is one of the few testsuites able to provide a
set of tests for Linux kernel real-time features, and
a large number of testers use it. Second, LTP has
a well established and clean architecture. It makes
use of two main libraries, librttest which provides
an API to create, signal, join and destroy real-time
tasks, and libstats which provides an API for some
basic statistical analysis and some functions to save
data for subsequent analysis. Last, LTP provides a
logging infrastructure. This is an important and de-
sirable feature for Lachesis, too.

We believe it is of little significance to compare
the results of tests to absolute values statically built
inside the testsuite. In fact, varying the hardware
to test, these values should vary as well. So, un-
like LTP, Lachesis provides a boolean pass/no pass
output only on functional tests; by contrast, in per-
formance tests it outputs a statistical summary of
the results.

4.1 Architecture

Lachesis is designed to analyse a variety of Linux
based real-time systems; therefore it provides a
straightforward method to build tests for different
kernels. During the configuration Lachesis probes
the system to determine which nanorkernels or real-
time patches are present, and instructs the compiler
to produce in output different executables for each
system to be tested. A set of scripts is provided to
execute tests sequentially; launching these scripts,
tests are executed one after another and tests results
are stored in logs for subsequent analysis.

librttest had to be rewritten to support both
RTAI and Xenomai primitives. Lachesis maintains
librttest API, extending it to provide advanced real-
time features, typical of Linux-based nanokernels.
Basic real-time features are provided encapsulating
real-time specific function into the pre-existing API,
thus concealing them from the user. For example,
the create task() primitive was modified to take
into account the corresponding primitives for Xeno-
mai and RTAI.

As a result, it is possible to write a single test
for a specific real-time feature and use it to test all
supported systems, thus increasing testsuite’s porta-

5



bility and maintainability.

The logging infrastructure of Lachesis is based
on LTP features. Libstat is used to provide a set of
functions to store data and make statistical calcu-
lus on them; other functions are used to write files
with reports on data. These files are written in an
easy readable form (though they are not yet machine
parsable) and stored in an unique subdirectory.

FIGURE 1: Lachesis’s architecture

4.2 API

One of the principal goals of Lachesis is to provide
a single API to develop tests for a number of dif-
ferent Linux based real-time systems. To do that,
it provides an API that can be divided in four sec-
tions: tasks management, time management, buffers
management and data management.

Tasks management API has been largely changed
from the original LTP API, to provide support for
testing on RTAI and Xenomai nanokernels. In par-
ticular, the create thread primitive has been mod-
ified to call the corresponding Xenomai primitive, if
Lachesis is requested to compile test for Xenomai
nanokernel. RTAI’s approach is quite different and
consists in ensuring that certain section of code can
be scheduled in accordance to some hard real-time al-
gorithm, calling some specific functions immediately
before and after them. We have addressed this par-
ticular mechanism defining four macros, to be used
inside the tasks to be defined:

• RTAI INIT defines task descriptor, scheduler
and system timer

• RTAI START TASK starts hard real-time section

• RTAI STOP TASK ends hard real-time section

• RTAI END deletes the task

In all the other primitives, where approaches do not
differ so much from system to system, small changes
have proved to be enough. Two primitives to create
periodic and deadline tasks were added.

Time management API was extended with many
primitives. A RTIME structure was defined to stan-
dardize time management between the different sys-
tems to be tested. Two functions have been defined
to make additions and subtractions on it. Nanosleep
and busy work primitives have been modified to call
specific real-time sleep functions. A primitive was
added to end the current period for the calling task.

Buffers management API remained almost un-
changed from original API. Few changes were made
to support RTAI’s memory management primitives,
changing malloc() and free() to rt malloc() and
rt free() where appropriate.

Data management API remained also unchanged
from original LTP API, since these functions only
deal with data collected from tests previously car-
ried out. We plan to work on this API in the near
future, to support XML parsing and to format results
adequately.

In addition to the API, we needed to introduce
some macros to replace some standard functions with
their real-time counterpart, provided by a particular
nanokernel. For example, we have a macro to re-
place printf() with rt printf() instances, if Lach-
esis have to build tests for Xenomai nanokernel.

4.3 Tests included in Lachesis

Below we briefly present all the tests currently in-
cluded in Lachesis. Some of them were ported from
different testsuites, others were developed as a part
of this work. In the naming scheme we have tried
to adopt the following principle: the first word is the
parameter measured by the test, the second indicates
the way in which measurement is made. We will in-
dicate when the test is considered to be passed and
the category it belongs to.

Tests are supposed to be done in an unloaded
system. When a load is necessary, the test itself gen-
erates it. It’s worth to say that Lachesis don’t take
into account power management features. So it’s up
to the user to ensure that tests are running under
the same power management conditions. This could
be done disabling the power management in the con-
figuration of the Linux kernel.

1) blocktime mutex is a performance test that

6



measures the time a task waits to lock a mutex. Test
creates a task with higher priority, one with lower
priority, and some tasks at medium priority; highest
priority task tries to lock a mutex shared with all the
other tasks. Test is repeated 100 times.

2) func deadline1 is a functional test we
developed, conceived to be used only on
SCHED DEADLINE patched kernels. It creates
a task set with U = 1, using the UUniFast [20] algo-
rithm not to bias test’s results. Task set is scheduled,
and test is passed if no deadline is missed.

3) func deadline2 is a functional test we
developed, conceived to be used only on
SCHED DEADLINE patched kernels. It creates
a task set with U > 1, using the UUniFast algorithm
not to bias test’s results. Task set is scheduled, and
test is passed if at least one deadline is missed.

4) func gettime verifies clock gettime() be-
haviour. It creates a certain number of tasks, some of
them setted to sleep, some other ready to be sched-
uled. Test is passed if the total execution time of
sleeping tasks is close to zero. This is a functional
test.

5) func mutex creates a number of tasks to walk
through an array of mutexes. Each task holds a max-
imum number of locks at a time. When the last task
is finished, it tries to destroy all mutexes. Test is
passed if all mutexes can be destroyed, none of them
being held by a terminated task. This is a functional
test.

6) func periodic1 creates three groups of periodic
tasks, each group with different priorities. Each task
makes some computation then sleeps till its next pe-
riod, for 6000 times. Test is passed if no period is
missed. This is a functional test.

7) func periodic2 is a functional test we devel-
oped, and is conceived to be used in kernels that
support primitives for periodic scheduling. It creates
a task set with U = 1, using the UUniFast algorithm
not to bias test’s results. Task set is scheduled, and
test is passed if no period is missed.

8) func periodic3 is a functional test we devel-
oped, and is conceived to be used in kernels that
support primitives for periodic scheduling. It creates
a task set with U > 1, using the UUniFast algorithm
not to bias test’s results. Task set is scheduled, and
test is passed if at least one period is missed.

9) func pi checks whether priority inheritance
support is present in the running kernel. This is a
functional test.

10) func preempt verifies that the system is able

to ensure a correct preemption between tasks. It cre-
ates 26 tasks at different priority, each of them trying
to acquire a mutex. Test is passed if all task are ap-
propriately preempted in 1 loop. This is a functional
test.

11) func prio verifies priority ordered wakeup
from waiting. It creates a number of tasks with in-
creasing priorities, and a master task; each of them
waits on the same mutex. When the master task
releases its mutex, any other task can run. Test is
passed if tasks wakeup happened in the correct pri-
ority order. This is a functional test.

12) func sched verifies scheduler behaviour using
a football analogy. Two kinds of tasks are created:
defence tasks and offence tasks. Offence tasks are
at lowest priority and tries to increment the value of
a shared variable (the ball). Defence tasks have an
higher priority and they should block offence tasks,
in such a way that they never execute. In this way
ball position should never change. The highest prior-
ity task (the referee) end the game after 50 seconds.
Test is passed if at the end of the test the shared
variable is zero. This is a functional test.

13) jitter sched measures the maximum execu-
tion jitter obtained scheduling two different tasks.
The execution jitter of a task is the largest difference
between the execution times of any of its jobs [19].
The first task measures the time it takes to do a fixed
amount of work; it is periodically interrupted by an
higher priority task, that simply wakes up and goes
back to sleep. Test is repeated 1000 times. This is a
performance test.

14) latency gtod is a performance test. It mea-
sures the time elapsed between two consecutive calls
of the gettimeofday() primitive. Test is repeated a
million of times, at bulks of ten thousand per time.

15) latency hrtimer one timer task and many
busy tasks have to be scheduled. Busy tasks run at
lower priority than timer task; they perform a busy
wait, then yield the cpu. Timer task measures the
time it takes to return from a nanosleep call. Test
is repeated 10000 times, and is passed if the highest
priority task latency is not increased by low priority
tasks. This is a performance test.

16) latency kill two tasks with different priority
are to be scheduled. Lower priority task sends a kill
signal to the higher priority task, that terminates.
The test measures the latency between higher pri-
ority task start and termination. Test is repeated
10000 times, and we expect a latency under the tens
of microseconds. This is a performance test.

17) latency rdtsc is a performance test. It mea-

7



sures the average latency between two read of the
TSC register, using the rdtscll() primitive. Test
is repeated a million of times.

18) latency sched is conceived to measure the la-
tency involved in periodic scheduling in systems that
do not support primitives for periodic scheduling.
A task is executed, then goes to sleep for a certain
amount of time; at the beginning of the new period
the task is rescheduled. We measure the difference
between expected start time and effective start time
for the task. We expect this difference is under the
tens of µs and, additionally, we expect the task does
not miss any period. This is a performance test.

19) latency signal schedules two tasks with the
same priority. One task sends a signal, the other re-
ceives it. The test measures the time elapsed between
sending and receiving the signal. Test is repeated a
million of times. We expect a latency under the tens
of µs. This is a performance test.

20) stress pi stresses the Priority Inheritance
protocol. It creates 3 real-time tasks and 2 non real-
time tasks, locking and unlocking a mutex 5000 times
per period. We expect real-time tasks to make more
progress on the CPU than non real-time tasks. This
is a stress test.

5 Conclusions and future work

In this paper we have presented Lachesis, a unified
and automated testsuite for Linux based real-time
systems. Lachesis tries to meet the need for a soft-
ware tool to test Linux and Linux-based systems real-
time features, having the following qualities:

• supports tests on Linux, RTAI, Xenomai, PRE-
EMPT RT and SCHED DEADLINE real-time
features, through a standard test API

• provides a series of functional, performance
and stress tests to ensure the functionality of
the examined kernels

• provides a series of tests for periodic and dead-
line tasks

• is easy to use: each feature to be tested is as-
sociated to a script, which runs tests and logs
the results for every testable system.

• it includes a set of bash scripts that helps to
execute tests in the correct order and in the
correct conditions.

Several real-time tests were ported to Lachesis
from other testsuites, in a simple and straightfor-
ward way. In many cases there were no needs to
change the code except to add some macro calls at
the beginning and at the end of the test’s code.

Our extension to librttest API has made possi-
ble to develop some new tests for threads with fixed
periods or deadlines. These tests are useful to value
jitter and latency in periodic task scheduling. Simi-
lar tests can be developed in very short times.

Unfortunately, Lachesis is far from complete.
First, its test coverage is very low. Second, tests
included in Lachesis are somewhat general to be re-
ally useful in development. So Lachesis needs to ex-
pand its test coverage with more specific tests, and
librttest needs to take into account more low level
primitive, to make possible to develop more signifi-
cant tests.

For this reasons, we believe it’s very important to
integrate the testsuite rt-tests in Lachesis. As under-
lined previously, rt-tests is very specific in respect to
Lachesis, and so it’s quite difficult to figure out how
to extend these tests to other real-time nanokernels.
We expect that a strong extension to librttest API
is necessary to reach this goal.

Up to now Lachesis is tested and used only on
x86 architecture. Given that we use only high-level
kernel primitives, we are quite confident that the
testsuite is easily portable on other architectures,
with little or no effort. Recently we developed a
porting of Xenomai 2.5.5.2 and RTAI 3.8 to a Mar-
vell ARM9 board2, and we plan to use Lachesis to
test the functionalities and the performances of these
portings.

However, just the variety of Linux based real-
time systems that Lachesis is able to test proves that
it is portable and easy to use. We plan to exploit
this qualities porting Lachesis to other systems, such
IRMOS [2], SCHED SPORADIC [21], XtratuM [22]
and PartiKle [23], and to other architectures.

Beyond this, we plan to develop some kernel-
space tests for real-time nanokernels and to build
a system to parse and XML format results. Test re-
sults quality can be improved, also, detailing possible
reasons behind a test failure.

Lachesis is actually under active development,
and can be downloaded from bitbucket.org3.

2ARM Marvell 88F6281, equipped with a Marvell Feroceon processor, clocked at 1.2 GHz, ARMv5TE instruction set.
3https://bitbucket.org/whispererindarkness/lachesis

8



Acknowledgments

We would like to thank Andrea Baldini and
Francesco Lucconi for their contributions in the de-
velopment of the testsuite, and Massimo Lupi for his
ideas and advices.

References

[1] S. Rostedt and D. Hart, Internals of the RT
Patch, in Proceedings of the Linux Symposium,
2007, pp. 161-172.

[2] F. Checconi, T. Cucinotta, D. Faggioli, and G.
Lipari, Hierarchical multiprocessor CPU reser-
vations for the linux kernel. OSPERT 2009, p.
15.

[3] D. Faggioli, F. Checconi, M. Trimarchi, and
C. Scordino, An EDF scheduling class for the
Linux kernel, in Proceedings of the 11th Real-
Time Linux Workshop, 2009, pp. 1-8.

[4] P. Mantegazza, E. Dozio, and S. Papacharalam-
bous, RTAI: Real time application interface,
Linux Journal, no. 72es, pp. 10-es, 2000.

[5] P. Gerum, Xenomai - Implement-
ing a RTOS emulation framework on
GNU/Linux, 2004. [Online]. Available:
http://www.xenomai.org/documentation/

[6] K. Yaghmour, Adaptive domain environment
for operating systems, 2001. [Online]. Available:
http://www.opersys.com/adeos/

[7] M. Bligh and A. Whitcroft, Fully Automated
Testing of the Linux Kernel, in Proceedings of
the Linux Symposium, vol. 1, 2006, pp. 113-125.

[8] D. Evans, J. Guttag, J. Horning, and Y. Tan,
LCLint: A tool for using specications to check
code, ACM SIGSOFT Software Engineering
Notes, vol. 19, no. 5, pp. 87-96, 1994.

[9] D. Beyer, T. Henzinger, R. Jhala, and R. Ma-
jumdar, The software model checker Blast, In-
ternational Journal on Software Tools for Tech-
nology Transfer, vol. 9, no. 5-6, pp. 505-525,
Sep. 2007.

[10] G. Carette, CRASHME: Random In-
put Testing, 1996. [Online]. Available:
http://crashme.codeplex.com/

[11] J. Admanski and S. Howard, Autotest-Testing
the Untestable, in Proceedings of the Linux
Symposium, 2009.

[12] H. Yoshioka, Regression Test Framework and
Kernel Execution Coverage, in Proceedings of
the Linux Symposium, 2007, pp. 285-296.

[13] http://git.kernel.org/?p=linux/kernel/git/clrk-
wllms/rt-tests.git;a=summary

[14] https://rt.wiki.kernel.org/index.php/Cyclictest

[15] P. Larson, Testing Linux with the Linux Test
Project, in Ottawa Linux Symposium, 2001, p.
265.

[16] S. Modak and B. Singh, Building a Robust Linux
kernel piggybacking The Linux Test Project, in
Proceedings of the Linux Symposium, 2008.

[17] S. Modak, B. Singh, and M. Yamato, Putting
LTP to test - Validating both the Linux kernel
and Test-cases, Proceedings of Linux Sympo-
sium, 2009.

[18] P. Larson, N. Hinds, R. Ravindran, and H.
Franke, Improving the Linux Test Project with
kernel code coverage analysis, in Proceedings of
the Linux Symposium, 2003, pp. 1-12.

[19] G. C. Buttazzo, Hard real-time computing sys-
tems - predictable scheduling algorithms and ap-
plications, 2nd edition, Springer, 2005.

[20] E. Bini and G. C. Buttazzo, Measuring the
Performance of Schedulability Tests, Real-Time
Systems, vol. 30, no. 1-2, pp. 129-154, May 2005.

[21] D. Faggioli, A. Mancina, F. Checconi, and G. Li-
pari, Design and implementation of a posix com-
pliant sporadic server for the Linux kernel, in
Proceedings of the 10th Real-Time Linux work-
shop, 2008, pp. 65-80. [Online].

[22] M. Masmano, I. Ripoll, A. Crespo, and J.
Metge, Xtratum: a hypervisor for safety criti-
cal embedded systems, in Proceedings of the 11th
Real-Time LinuxWorkshop. Dresden. Germany,
2009.

[23] S. Peiro, M. Masmano, I. Ripoll, and A. Cre-
spo, PaRTiKle OS, a replacement for the core of
RTLinux-GPL, in Proceedings of the 9th Real-
Time Linux Workshop, Linz, Austria, 2007, p.
6.

9


