POK, an ARINCG653-compliant operating system
released under the BSD license

Julien Delange
European Space Agency
Keplerlaan 1, 2201AG Noordwijk, The Netherlands
julien.delange@esa.int

Laurent Lec
MakeMeReach
23 rue de Cléry, 75002 Paris, France
lec.laurent@gmail.com

Abstract

High-integrity systems must be designed to ensure reliability and robustness properties. They must
operate continuously, even when deployed in hostile environment and exposed to hazards and threats.

To avoid any potential issue during execution, they are developed with specific attention. For that
purpose, specific standards define methods and rules to be checked during the development process.
Dedicated execution platforms must also be used to reduce potential errors. For example, in the avionics
domain, the DO178-B standard defines the quality criteria (in terms of performance, code coverage, etc.)
to be met according to the software assurance level. ARINC653 specifies services for the design of safe
systems of avionics systems by using partitioning mechanisms.

However, despite those specific methods and tools, errors are still introduced in high-integrity systems
implementation. In fact, their complexity due to the large number of collocated functions complicates
their analysis, design or even configuration & deployment. In addition, an error may lead to a safety or
security threats, which is especially critical for such systems.

In addition, existing tools and software are released under either commercial or proprietary terms.
This does not ease identification and fix of potential security /safety issues while also reducing the potential
users audience.

In this paper, we present POK, a kernel released under the BSD license that supports software iso-
lation with time & space partitioning for high-integrity systems implementation. Its configuration is
automatically generated from system specifications to avoid potential error related to traditional code
production processes. System specifications, written using AADL models are also analyzed to detect any

design error prior implementation efforts.

1 Introduction

Safety-critical systems are used in domains (such as
military, medicine, etc.) where security and safety
are a special interest. They have strong requirements
in terms of time (enforcement of strong deadlines)
and resources consumption (low memory footprint,
no dead code, etc.). These systems must ensure a
continuous operational state so that each potential
failure must be detected before generating any defec-

tive behavior. However, they often operate in hostile
environments so that they must be especially tested,
validated to ensure absence of potential error.

Last years, processing power of such real-time
embedded systems increased significantly so that
many functions previously implemented using dedi-
cated hardware are now provided by software, which
facilitates updates and reduces development costs.
In addition, this additional processing power gives
the ability to collocate several functions on a same

computation node, reducing the hardware to deploy
and thus, the overall system complexity.

However, by collocating several functions on the
same processor brings new problems. In particular,
this integration must ensure that each function will
be executed as it was deployed on a single proces-
sor. In other words, the execution run-time must
provide an environment similar to the one provided
by a single processor. In addition, impacts between
collocated functions must be analyzed, especially
for safety-critical systems where integrated functions
may be classified at different security/safety levels.

Next section details the problem and our pro-
posed approach. It also presents other work related
to this topic.

2 Problems & Approach

The following paragraphs details identified problems
related to high-integrity systems design and devel-
opment with the increasing number of functions and
their integration on the same processor. Then, it
details our approach and each of its functionality.

2.1 Problems

High-integrity systems host an increasing number of
functions. In addition, due to new hardware and per-
formance improvements, the trend is to exploit ad-
ditional computing capacity and collocate more soft-
ware components on the same processor. However,
this introduces new problems, especially when sys-
tems have to enforce safety or security requirements:

1. The platform must provide an environment for
system functions so that they can be executed
as if they run on a single processor.

2. Functions collocated on the same processor
must be analyzed so that an error on a func-
tion cannot impact the others. For example,
this would ensure that a function classified at
a given assurance level cannot impact another
at a higher one.

3. The execution platform configuration must be
error-free to ensure functions isolation and re-
quirements enforcement. Otherwise, any po-
tential mistake would lead to misbehavior and
make the whole system unstable.

First problem relates to function isolation: while
collocating several functions on the same proces-
sor, designers must ensure their isolation. For that

purpose, functions are separated within partitions.
These are under supervision of a dedicated kernel
that provides partitions execution separation using
time & space isolation:

e Time isolation means that processing capac-
ity is allocated to each partition so that it is
executed as if it was deployed on a single pro-
Cessor.

e Space isolation means that each partition is
contained in a dedicated memory segment so
that one partition cannot access the segment
of another. However, partitions can communi-
cate through dedicated channels under kernel
supervision so that only authorized channels
are granted at run-time.

Partitions integration analysis is especially im-
portant since a partitioned kernel may collocate sev-
eral functions classified at different security/safety
levels. Communication channels between partitions
must be verified to check that system architecture
does not break safety /security requirements. For ex-
ample, in the context of safety, we have to check that
a partition at a low safety level cannot block a device
used by a partition at a higher security level. On the
other hand, on security level, we have to check that
a partition cannot establish covert channel to read
or write data from/to partition classified at higher
security levels.

Thus, automatic kernel and partitions configura-
tion would be a particular interest because these sys-
tems host partitions that provide critical functions
and must be carefully designed. In consequence, we
have to avoid any manual code production process,
because it is error prone and have important eco-
nomic and safety impacts [6]. This is also especially
critical when creating the most important code - the
one that configures the isolation policy.

2.2 Approach

To cope with identified problems, we propose the fol-
lowing approach focused on the following aspects:

1. A dedicated run-time, POK, that ensures
time & space partitioning so that functions are
executed as if they run on a single processor.

2. An analysis framework that analyzes sys-
tem functions and detects potential errors.

3. An automatic partitions and kernel con-
figuration tool from validated specifications.

This ensures enforcement of validated safety
and security requirements at run-time.

Use of these three steps altogether makes a com-
plete development process that would ease integra-
tion of heterogeneous functions, as illustrated in fig-
ure[ll First, the designer describes its functions with
its properties (criticality/security levels, execution
time, etc.) using an appropriate specification lan-
guage (AADL). Then, we analyze system architec-
ture to ensure that each of their requirements would
be enforced while integrating (step 1 on[Il). From this
analysis, deployment & configuration code is auto-
matically produced so that partitions and kernels are
correctly configured according to their requirements
(step 2 on[I)). Finally, generated code is integrated
with the POK execution platform that supports time
& space isolation so that functions are integrated and
separated as specified (step 3 on [I]).

AADL models
14

| Specifications validation | (1)

| Code generator | (2)

Plate-forme (POK

(3)

Implementation

FIGURE 1:

Overall development approach

As a result, our approach ensures integration of
several functions on the same processor while pre-
serving all their requirements in terms of timing, se-
curity or safety.

2.3 Related Work

Partitioning operating systems that support time &
space partitioning already exist. However, most ex-
isting solutions are released as commercial and pro-
prietary software, such as Vxworks [8] or LynxOS [9].
On the free-software side, the Xtratum [13] project
aims at providing partitioning support by isolating
functions in RTEMS [11] instances. However, it iso-
lates functions using virtualisation mechanisms (us-
ing a dedicated hypervisor), whereas POK relies on
a traditional kernel model.

In addition, several standardization attempts
were initiated over the years, to define the concepts
behind partitioned operating systems. Among them,

the ARINC653 avionics standard 2] specifies the ser-
vices and the API that would be provided by such a
system. The MILS [I4] approach, dedicated to secu-
rity, also details required services to integrate several
functions on the same processor while ensuring a se-
curity policy.

On our side, the POK operating system provides
services required by both ARINC53 & MILS: time
& space partitioning support, real-time scheduling,
device drivers isolation, etc. It supports ARINC653
API and provides a POSIX adaptation layer to ease
application use on POK. Finally, it is released under
the BSD license so that users are willing to use it as
free-software and can easily improve it, depending on
their needs.

On system modeling and analysis side, no frame-
work provides the capability to both capture and
analyze partitioned architecture requirements. How-
ever, this is very important for incoming projects
when system architecture must be analyzed/vali-
dated and development automated, especially be-
cause traditional development methods costs are still
increasing [6] and lead to security/safety issues.

Similarly, no tool automates configuration and
deployment of partitioned kernel from their spec-
ifications. Usually, developers make it manually
by translating system requirements into configura-
tion/deployment code. This is still error-prone and
a fault can have a significant impact (missed tim-
ing constraint/deadline, communication channel not
allowed, etc.). Automating configuration is still an
emerging need but would likely to take importance
while system functions are still increasing.

3 The POK execution platform

The following sections gives a general presentation
of the POK kernel, detailing its services and imple-
mentation internals.

3.1 Overview

POK is an operating system that isolates partitions
in terms of:

e time by allocating a fixed time-slice for parti-
tions tasks execution with its own scheduling
policy.

e space by associating a unique memory seg-
ment to each partition for its code and data.

However, partitions may need to communicate.
For that purpose, POK provides the inter-partitions
ports mechanism that defines interfaces to exchange
data between partitions. These are defined in ker-
nel configuration so that only specified channels are
allowed at run-time. Consequently, system designer
has to specify the communication policy prior (which
partition can communicate with another) executing
the system.

Moreover, partitions may require to communi-
cate with the external environment and so, access
devices. However, sharing a device between two par-
titions leads to potential security or safety issues: a
partition at a low security level may read data pre-
viously written by a partition classified at a higher
level. To prevent this kind of issue, POK requires
that each device is associated to one partition and
the binding between partitions and devices must be
explicitly defined during the configuration.

‘ Cipher algorithms H Device drivers code ‘ §

q.’ —_~

| Maths functions || libc|[POSIX| [ARINCES53|| = §
o

Kernel Tasking Intra-partition E i—%
interface communications || ©
Time Space Inter-partitions ||
isolation || jsolation || communication || 2
Fault Time Memory |2
Handling |[Management| Management E

| Hardware Abstraction Layer |

FIGURE 2:

tion layers

Services of Kernel and Parti-

Finally, POK is available under BSD licence
terms, supports several architectures (x86, PowerPC,
SPARC/LEON) and has already been used by differ-
ent research projects [I5] Bl [18].

3.2 POK services

Figure 2] depicts the services of each layer (kernel/-
partition). The kernel contains the following:

e The Hardware Abstraction Layer provides
a uniform view of the hardware.

¢ Memory Management handles memory to
create or delete memory segments.

e Time Management counts the time elapsed
since system start-up and provides time-related

functions to partitions (for supporting schedul-
ing algorithms for example).

e Fault Handling catches errors/exceptions
(for example: divide by zero, segmentation
fault, etc.) and calls the appropriate handler
(partition or task that generates the fault).

e Time Isolation allocates time to each parti-
tion according to kernel configuration.

e Space Isolation switches from one memory
segment to another when another partition is
selected to be executed.

e Inter-partitions communication exchanges
data from one partition to another. Inter-
partitions communication is supervised by the
kernel so that only explicitly defined commu-
nications channels can be established and ex-
change data.

Partition-level services aims at supporting appli-
cations execution. It provides relevant services to
create execution entities (tasks, mutexes, etc ...) and
helps developers:

e Kernel interface accesses kernel services
(writing to/reading from inter-partitions com-
munication ports, creating tasks, etc.). It re-
lies on software interrupts (syscalls) to request
specific kernel services.

e Tasking functions handles task-related as-
pects (thread management, mutex/semaphore
locking, etc.).

e Intra-partition communication provides
functions for data exchange within a parti-
tion. It supports state-of-the-art communi-
cation patterns: events or data-flow oriented,
semaphores, events, etc. Intra-partitions ser-
vices are the same than the one provided in
the ARINC653 [2] standard.

e Libc, Maths functions, POSIX & AR-
INC653 layers are the mapping of well known
standards in POK. It aims at adapting other
APIs to help developers for reusing existing
code in POK partitions. For example, by using
this compatibility layer, developers can reuse
existing software that performs POSIX calls.

e Device drivers code is a set of functions to
support devices within partitions. It relies on
the kernel-interface service when privileged in-
struction (see section B.5]) are used.

e Cipher algorithms is a set of reusable func-
tions to crypt/decrypt data within a partition.

3.3 Time isolation policy

The time partitioning policy requires a predictable
method to ensure enforcement of time-slices alloca-
tion. For that purpose, POK schedules partitions
using a round-robin protocol: each of them is exe-
cuted periodically for a fixed amount of time. This
introduces a scheduling hierarchy: partitions are first
scheduled and then, tasks within the partition are
scheduled according to the internal partition schedul-
ing policy.

RMS RMS
5 policy policy
>
3
Round-Robin Round-Robin
policy policy
o Partition 1 | Partition 2 Partition 1 Partition 2
E (NN NN NN RN
2 I
~ 10 ms
FIGURE 3: Partitions scheduling example
using POK

In order to ensure predictable communications
(in terms of time), inter-partitions communication
data are flushed at the major frame, which is the
end of the partition scheduling period (sum of all par-
titions periods). In other words, once all partitions
are executed, inter-partitions communications data
are flushed and is available to recipients partitions
during their next execution period.

An example of such a scheduling policy is pro-
vided in figure Bl with two partitions: one sched-
ules its task using the Rate Monotonic Scheduling
(RMS) policy while the other uses Earliest Dead-
line First (EDF). Each partition is executed during
100ms and inter-partitions communication ports are
flushed each 200ms.

Within partitions, POK supports several
scheduling policies: the basic FIFO algorithm or
other state-of-the-art methods such as EDF or LLF.
However, support for advanced scheduling algo-
rithms is still considered as experimental.

3.4 Space isolation and inter-

partitions communication

Partitions are contained in a distinct memory seg-
ment, which means that each of them has a unique
space to store its code and data. Segments cannot

overlap each other and a partition cannot access to
memory address located outside its associated seg-
ment.

Segments properties (address, size, allocation)
are defined at configuration time and cannot be mod-
ified during run-time. To avoid any access outside
their segments, partitions are executed in a user con-
text. They can only use a restricted set of instruc-
tions@, as for user processes on regular operating sys-
tems. To use privileged instructions@, they must call
kernel services and performs system calls (see POK
services - kernel interface in 32)).

To guarantee space isolation, POK relies on the
Memory Management Unit (known as the MMU), a
dedicated hardware component usually embedded in
the processor. Depending on the architecture, dif-
ferent protection mechanisms can be used (segmen-
tation, pagination, etc.). For the x86 platform, it
relies on the segmentation. This protection pattern
has many advantages: it is very simple to program
(the developer has to define memory areas using the
Global Descriptor Table - GDT [12]) and is pre-
dictable (other memory protection mechanisms re-
quires to perform special operations which execution
time are difficult to bound). When switching from a
partition to another, the POK kernel ensures that:

1. Execution context from the previous partition
is clean (the elected partition cannot read data
produced by the previous).

2. The memory segment associated with the
elected partition is loaded.

3. Caches are flushed so that the execution con-
text is clean as if the partition was freshly
elected on a clear environment.

(Partition 1) (Partition 2

POK kernel

FIGURE 4: Inter-partitions communica-
tion within POK

Finally, POK provides the inter-partition com-
munication services, which aim at establishing and
monitoring data exchange from one partition to an-
other, as shown in figure @ where partition 1 send
data to partition 2 under the supervision of the POK
kernel. These channels must be defined at configu-
ration time so that the kernel allows only explicitly
defined communication at run-time.

1On Intel architectures, such code is usually executed in ring 3
20n Intel architectures, privileged instructions are available for code executed in ring 0

In the example of figure @l any attempt to send
data from partition 2 to partition 1 will fail. As
explained in section B3] inter-partitions communi-
cation are flushed when the major time frame is
reached. To do so, the POK kernel copies the data of
each initialized source ports to their connected des-
tination ports, copying memory areas from one par-
tition to another. However, to ensure that only rele-
vant data are copied, the size of each inter-partition
port is also defined at configuration time so that no
additional data can be read by the destination par-
tition.

3.5 Device drivers implementation

Compared to other approaches, POK does not exe-
cute device drivers within the kernel. Instead, their
code is isolated within a single partition to:

e Avoid any impact from a device driver error
(safety reason). If the driver is executed in
the kernel context, a crash would lead to un-
expected impacts, such as crashing the whole
kernel or other partitions.

e Ensure data isolation (security reason): if the
device is shared by several partitions, one clas-
sified at a low security level may read or write
data on the device from another one classified
at higher level.

Partitionj

Partitionj
rggder

driver
A

POK kernel

Partitionj
writer

FIGURE 5:
ing POK

Model for sharing a device us-

However, some partitions may need to share a
device. Even if they cannot have their own driver in-
stance, these partitions may communicate with the
one that executes the driver. In that case, the con-
nection between partitions must be explicitly defined
at configuration time and then, be enforced by the
security policy. This is illustrated in figure the
device that reads the device receives data from the
partition driver while the writer has an outgoing con-
nection to it. Connection to the driver must be ex-
plicitly defined so that the partition driver sends data
only to relevant communication ports.

Partition
(application)

| POK kerheK_
|

[] Application partition segment

[] Driver partition segment
.

I/0O segment

FIGURE 6:
within POK

Input/Output operations

Finally, when executing within a partition, a
driver requires to have access to privileged instruc-
tions to control hardware. For that purpose, POK
provides access to these privileged instructions only
to the relevant partition (the one that accesses the
driver). In that case, this additional access must
be defined at configuration time so that the kernel
grants/refuses access to privileged instructions ac-
cording to its configuration policy. An example is
shown in figure in this system, two partitions
are executed: one application partition and a driver
partition that controls a device. The system defines
three memory areas: one for each partition and an
additional area mapped to the device memory. The
driver partition may have access to this specific addi-
tional memory segment to control the hardware but
the application partition would not be able to access
it.

3.6 Configuration flexibility

One major advantage of POK compared to other par-
titioned operating systems is its fine-grained configu-
ration policy: each service of POK, at each level (par-
tition of kernel) can be configured and finely tuned.
This would have several advantages: first, it reduces
the set of functionality to the minimum and ensures
a reduced memory footprint. In addition, reducing
the number of functions and potentially useless code
increases the code coverage of the whole system (for
partitions and kernel).

However, this flexibility is particularly interest-
ing when the system is automatically configured, ac-
cording to its specification/description. Otherwise,
the developer has to write the configuration man-
ually, which would be time-consuming and error-
prone. Hopefully, POK provides such configuration
generation facility through its AADL code generator.

To auto-generate kernel and partitions configuration,
designer must then first model its system with its re-
quirements. This is explained in the next sections.

AADL models

| Model validation rules

Validafion failure

Validation success

AADL-to-ARINC 653
code generator (Ocarina)

/ / Node production

Generated Generated =
Configuration Configuration | |2
for partition 1 for partition n | |

.9
Partition Partition &
services (libpok) services (libpok) | |

Generated Kernel Kernel T 5

configuration services (POK) E E‘

FIGURE 7: Development and prototyping
process using AADL models

4 Partitioned System Model-
ing

To define a system architecture that uses POK, its
specification is written with an appropriate modeling
language to:

1. Specify system functions using a rigorous no-
tation (better than a simple text-based docu-
ment)

2. Analyze system properties and requirements to
check for potential errors before implementa-
tion efforts. (for example, check system archi-
tecture against a security policy).

3. Generate configuration & deployment code us-
ing automated tools so that we avoid hand-
written code and its related problems.

For our needs, we make a specific process (as il-
lustrated in figure[7)) for the design and implementa-
tion or partitioned systems supported by POK. First
of all, engineers create AADL [7] models that specify
system constraints and requirements. These specifi-
cations are processed by validation tools that check
for potential error/fault that could generate a prob-
lem either at run-time or even for system implemen-
tation. Finally, code generator automatically cre-
ates configuration & deployment code for both ker-
nel and partitions according to system requirements

(AADL models) so that verified properties are cor-
rectly translated into code.

Next sections present the language chosen
(AADL [7]), its tailoring for partitioned architecture
modeling and its use for specifications validation.

4.1 AADL

The Architecture Analysis and Design Language
(AADL) [7] is a modeling language that defines
a set of components to model a system architec-
ture. It provides hardware (processor, virtual
processor, memory, etc.) and software components
(thread, data, subprogram, etc.) as well as mecha-
nisms to associate them (for example, model the as-
sociation of a thread to a processor or a memory).

The language itself can be extended using:

1. Properties to specify components require-
ments or constraints (for example, the period
of a task). The core language provides a set of
predefined properties but system designers can
define their own.

2. Annex language to associate a piece of code
of another language to a component. By do-
ing so, it provides a way to interface AADL
components with third-party language for the
association of other system aspects.

AADL provides both graphical and textual no-
tations. The graphical one is more convenient for
system designers while the text-based one is easier
to process by system analyzers/code generators. A
complete description of the language, written by its
authors, is available in [I].

4.2 Tailoring the AADL for parti-
tioned architectures

The AADL provides a convenient way to describe
both software and hardware architectures but one
may need guidance to know how to use it to describe
partitioned architectures and especially how to use
AADL components to describe POK run-time enti-
ties (partitions, memory segments, etc.) and their re-
quirements/constraints (partitions scheduling, mem-
ory segments size, etc.).

For that purpose, we design modeling patterns,
which consist of a set of modeling rules to be used
by system designers to represent partitioned archi-
tectures. The main idea is to restrict the set of com-
ponents to be used in a model and which properties

must be associated to the model in order to make a
complete description of a partitioned architecture.

These modeling patterns has been first design for
POK [15] and then, be standardized as an annex of
the AADL standard [3]. Most important patterns de-
fine how to use AADL to model a partition (process
bound to a memory and a virtual processor to
model the partition, its allocated memory segment
and its execution context), intra-partition communi-
cation (connections of AADL ports between thread
located within the same process) or inter-partition
communication (connection of AADL ports between
process components). A full description of these
modeling patterns is available in [I5] 3, [5].

Next section presents our tools that check models
to validate partitioned architectures requirements.

4.3 System validation

Once system architecture is specified using AADL
models, analysis tools process models and check their
compliance with several requirements/guidelines. In
the context of POK, we design the following rules:

e Modeling patterns enforcement rules
(rules described in previous paragraph).
This ensures that models are complete, with all
required components/properties and they can
be processed to configure the kernel and parti-
tions with code generators.

e Handling of potential safety issues rule.
This one checks that all potential error will be
recovered and report to the user which error
is not handled by a partition or a task. For
example, if the designer didn’t specify a recov-
ery subprogram when a memory fault is raised
while execution a partition, the analyzer will
report an error.

e Security analysis rules. This aims at check-
ing the architecture against a security policy.
Depending on its own classification level and
the one of the data they produce or receive, a
partition may be compliant with a specific se-
curity policy. On the other hand, the security
policy defines which operations are legal so that
our tool can automatically checks for architec-
ture compliance with them. Actually, our tool
checks state-of-the-art security policies such as
Bell-Lapadula [I7] or Biba [16].

Other validation can be issued on the models to
check either the correctness of the architecture (for

example: resource dimensions with the analysis of
memory segments size with respect to the associated
partitions requirements - size of tasks size, etc.) or
validation of a specific constraint (for example, par-
titions scheduling).

Once models are validated and the architecture
considered as correct, our code generator, Ocarina,
produces configuration & deployment code for both
the kernel and its associated partitions. Next sec-
tions detail this process.

5 Automatic Configuration &
Deployment of Partitioned
Architectures

Once system requirements and constraints have been
validated, the Ocarina AADL tool-suite processes
models and generates configuration & deployment
code for both kernel and partitions, as shown in fig-
ure [l Next sections describe the process [5], high-
lighting its benefits regarding safety-critical systems
needs (predictability, safety assurance, etc.) and con-
straints (code coverage, etc.).

5.1 Code generation Overview

Our code generator process [5] consists in analyzing
AADL models, browsing its components hierarchy
and, for each of them, generates appropriate code to
create and configure system entities (as depicted in
figure [[). The process creates the kernel configura-
tion code (partitions time slots, memory segments as-
signment for each partition, etc.) and partitions con-
figuration code (services to be used, required mem-
ory, intra-partition communication policy, etc.).

For example, when the code generator visits a
memory component, it generates code to create a new
memory segment. Then, it inspects the model to re-
trieve the associated partition and configure the ker-
nel to associate the appropriate partition with this
segment. Each AADL entity and property is used
to produce system configuration code so that the re-
sulting process creates a complete code, almost ready
to be compiled. Next section explains which part of
the code is automatically generated and which still
requires some manual code to have a complete exe-
cutable system.

5.2 Kernel and partitions configura-
tion

At first, the code generator browses components hi-
erarchy to create the kernel and partitions configu-
ration code. For that purposes, it analyzes the fol-
lowing AADL components:

e processor: for the kernel configuration. The
processor components specifies the time slots
allocated for each partition so that they are
translated into C code to configure the kernel
time isolation policy.

e virtual processor: for partition run-time
configuration. Based on the properties of this
component, the code generator produces code
that configures partitions services (need for
memory allocation, POSIX or ARINC653 API
support, etc.)

e process and its features: the process con-
tains all partitions resources (thread and
data) so that necessary amount of resources
is allocated in the kernel and its partition.
process features represent inter-partitions
communication ports. When analyzing such
entities, the code generator configures these
ports and their connection within the kernel
so that only communication channels specified
in the model would be granted at run-time.

e memory: as it represents a memory segment,
the code generator produces configuration code
that instantiates a new memory segment in the
main system memory and associates it to its
bound process component (that corresponds
to a partition). In consequence, at run-time,
each partition will be associated with a mem-
ory segment that has the properties (address,
size, etc.) specified in the model.

Once this configuration code has been generated,
Ocarina also generates the behavior code of the sys-
tem, the one executed by each task. Next section
details this step.

5.3 Behavior code generation

The behavior part corresponds to the code that uses
partitions resources to execute application functions.
It consists in getting/putting data from/to the ex-
ecution environment (for example, by using inter-
partitions communication ports), calling application
functions and managing tasks execution (put a task
in the sleep mode when its period is completed, etc.).

As for the configuration code generation, the be-
havior code of application is generated from a prede-
fined set of AADL components:

e A thread component specifies a task that
potentially communicates using its features.
For each thread, Ocarina generates code that
gets the data from its IN features, performs
the call sequence to its subprogram and sends
produced output using its OUT features.

e A data component represents a data located
in a partition, shared among its tasks and pro-
tected against potential race conditions using
locking mechanisms (mutex, semaphore, etc.).
For each task that uses the data, the code gen-
erator produces code that locks it, modifies it
and finally releases it.

e A subprogram component references object
code implemented either in C, Ada or even as-
sembly languages. This is just a reference to
low-level implementation so when visiting such
component, the code generator creates a func-
tion call to the object code. Finally, it also
configures the build system in order to inte-
grate the object code in the partition binary.

Then, almost all the code of the system is pro-
duced by Ocarina. The user has to provide the
application-level code, the one referenced by AADL
subprogram components and automatically called by
the behavior code generated for each partition. Next
section details the benefits of this process with re-
spect to high-integrity systems requirements.

5.4 Benefits of Code Generation

First of all, the use of such a process requires to
specify system architecture using a modeling lan-
guage, which makes the whole process more rigorous
than just using a text-based specification document.
Moreover, the process brings the following benefits:

1. Early error detection
2. Syntax/semantic error avoidance

3. Specifications requirements enforcement

By using validated models as a language source
for system implementation, the development pro-
cess detects specification errors at the earliest when
such problems are difficult to track and usually de-
tected during tests (at best) or production (at worst)

phases. By identifying these errors prior to the im-
plementation, we save a significant number of prob-
lems and save development costs.

Then, by automating code production with code
generators such as Ocarina, we rely on established
generation patterns that output the same block of
code according a predefined AADL block. Use of
such code patterns avoids all error related to hand-
written code that usually introduce syntax/semantic
errors that are difficult to trackd and require code
analysis tools and reviews to be found.

Finally, a particular interest is the enforcement of
the specifications. Implementation compliance with
the specifications is usually checked during manual
code review. However, this is long, costly and also
error-prone [0] since its relies on a manual inspec-
tion. By automating the code production from the
specifications and by using code generation patterns,
implementation code ensures specifications enforce-
ment and so, would reduce development costs while
improving system safety and robustness.

6 Case-Study

We illustrate the POK dedicated design process
through a basic example with two partitions: one
that sends an integer to another which do some pro-
cessing and outputs its result.

6.1 Overview

To focus on the design process, we limit the behavior
of the system to a basic example: the sender parti-
tion executes a task each second, increments an in-
teger (starting from 0) and sends the result to the
receiver partition using an inter-partition communi-
cation channel. Then, the receiver partition runs a
task activated each 500ms that retrieves the value
sent by the other partition and triggers a divide by
zero, depending on the received value. This, the sec-
ond partition would execute the dedicated handler
that recover from the fault it generates.

System architecture is made of two partitions
each one executed during a 500ms time slot (so that
the major frame is 1 second) and stored in a segment
of 120Kbytes. Each partition contains a periodic
thread (either the sender or the receiver) that calls
one subprogram (the one that sends or receives the
integer). Partitions communicate through two queu-
ing ports, connection with a inter-partition channel.

3for example, the C code if (c =

1) statement; is often an error even if legal and would likely be if (c

10

Finally, the recovery policy requires to stop the ker-
nel when an error is raised at kernel-level and restart
other components (partition, task) when one of them
triggers an error/exception.

\

\

Qse_study_osal

FIGURE 8: AADL model of the case-study

pok_kernel

6.2 AADL modeling

The graphic version of the case-study is illustrated
in figure[® It maps the requirements previously de-
scribed with specific execution components:

e Partitions process (recv_prs and
snd_prs for application aspects), virtual
processor (partl and part2 of pok kernel
for run-time concerns) and memory (segments
specification) components. Arrows on the
graphical model explicit their association.

use

Tasks of each partition are defined with a
thread component within each partition (ei-
ther recv_thr) or snd_thr).

Queuing ports are added on each partition
and connected within their containing system
(case_study_osadl)lt explicitly defines com-
munication channel that can be requested by
partitions at run-time.

Definition of system recovery policy uses AADL
properties, included only in the textual represen-
tation. The following listing provides an exam-
ple of the definition of partition run-times with
their recovery strategy (the Recovery Errors and
Recovery_Actions properties). It also includes a
processor component that represents the parti-
tioning kernel with the two partition environments
(partl and part2) and its associated time isolation
policy (Slots, Slots_Allocation and Major Frame
properties).

1) statement;

1 virtual processor implementation partition.common
properties

3 Scheduler => RR;
Additional_Features=> (console, libc_stdio);
5 Recovery_Errors => (lllegal_-Request ,
Partition_lnit);
7 Recovery_Actions => (Partition_Restart,

Partition_Stop);
9end partition.common;

11
processor implementation pok_kernel.i
13 subcomponents

partl virtual processor partition.common;
15 part2 virtual processor partition.common;
properties
17 Major_Frame => 1000ms;
Slots => (500ms, 500ms);
19 Slots_Allocation =
(reference (partl), reference (part2));
21 Recovery_Errors => (Kernel_lnit,
Kernel_Scheduling);
23 Recovery_Actions => (Kernel_Stop,

Kernel_Stop);
25 end pok_kernel.i;

The following listing also illustrates the defini-
tion of the complete system with its processor, par-
titions, memory and the connection of the inter-

partitions queuing ports.
1 system implementation osal.i

subcomponents
3 cpu processor pok_kernel.i;
sender process snd_prs.i;
5 receiver process recv_prs.i;
mem memory ram. i;

7 connections

port sender.pdataout —> receiver.pdatain;
9 properties

actual_processor_binding =>

11 (reference (cpu.partl)) applies to sender;
actual_processor_binding =>

13 (reference (cpu.part2)) applies to receiver;
actual_-memory_binding =>

15 (reference (mem.segl)) applies to sender;
actual_-memory_binding =>

17 (reference (mem.seg2)) applies to receiver;

end osal.i;

6.3 AADL model validation

We validate system architecture using the Require-
ments Enforcement Analysis Language (REAL [19])
tool. It analyzes AADL components hierarchy and
validates it against theorems. By using this tool, we
validate model structure and compliance with model-
ing patterns. We illustrate that using two theorems.

The first one (see listing below) checks compli-
ance of system architecture regarding space isola-
tion and memory segments definition. It processes
memory components contained in the main system
(that corresponds to the main memory - like RAM)
and ensures that each one contains memory sub-
components to specify memory segment with their
size (by checking the definition of the Word_Count
property).

theorem Contains_Memories

foreach s in system_set do
mainmem := {y in Memory_Set

2

4 is_subcomponent_of (y, s)};
partitionsmem :=
6 {x in Memory_Set |
is_subcomponent_of (x, mainmem)};
8
check ((Cardinal (mainmem) > 0) and
10 (Property_Exists
(partitionsmem, "Word_Count”))
12

10#define

11

end Contains_Memories ;

Second validation theorem (see listing below)
checks the major frame compliance (see section
for its definition) with partitions time slots. To do
so, the theorem processes each processor compo-
nent of the system and checks that the value of the
Major Frame property is equal to the sum of the
Slots value.

1 theorem scheduling_major_frame

foreach cpu in processor_set do
check (property_exists(cpu, "Major_Frame”) and
((float (property (cpu, "Major_-Frame”))
sum (property (cpu, "Slots”))))))
end scheduling_major_frame;

3

Other validation theorems can be designed and
added to the process to automatically check for en-
forcement of other requirements or also verify specific
modeling patterns. Interested readers may refer to
the POK distribution available on the official POK
website [I0]: it contains a complete REAL [19] the-
orem library to check all modeling patterns related
to partitioned architectures.

6.4 Code generation & metrics

Configuration and deployment code is automatically
generated from AADL specifications. As models
have been previously validated, produced output is
expected to enforce system requirements.

Among all generated files, one especially impor-
tant is deployment.h, which defines constant and
macro that configure kernel services and set resources
dimensions (amount of ports, partitions, etc.). The
following listing provides an overview of the file gen-
erated from the model of this case-study.

/*

2 % other configuration directives
4 */

#define
G#define
#define
8#define
#define

POK_NEEDS_CONSOLE 1
POK_CONFIG_NB_PARTITIONS 2
POK_CONFIGSCHEDULINGSLOTS {500,500}
POK_CONFIG_SCHEDULING_SLOTS_ALLOCATION {0,1}
POK_CONFIG_SCHEDULING_NBSLOTS 2
POK_CONFIG_.SCHEDULING_.MAJOR_FRAME 1000

#define POK_CONFIG.NB_PORTS 2

We can check and verify that configuration direc-
tives enforces model requirements: two partitions are
defined, scheduling slots of each partitions (500ms)
is correctly mapped, as well as the major frame (1s).

The code generation process not only configures

the kernel but produces partitions configuration and
behavior code. Developers only have to write ap-
plication code, which corresponds to the functional
part of the system. In this case-study, it consists
of two functions: one that outputs an integer and
stores it as a function argument (the one used on the
sender side) and another that takes one integer as
argument and process it (receiver side). The code
provided by the developer is shown in the following
listing, demonstrating that code production automa-
tion reduces manual code production activities.

In the following application code, the receiver
part raises a division by zero exception when result
of (t+ 1)%3 == 0 (line 16 of the application code).
According to the recovery policy, when such a condi-
tion is met, the partition restarts. To show graphi-
cally that the partition is correctly restarted, we also
output the number of times the function is executed
using variable step. Its initial value is stored in the
data from the partition binary so that when reload-
ing the partition, the initial value is set again in the
variable.

1 void user_send (intx t)
{
3 static int n = 0;
5 printf ("Sent_value %d\n", n);
n=n+1;
7 *t = n;
}
9
static int step = 0;
11
void user_receive (int t)
13 {
int d;
15
d=(t+1) % 3;
17 printf (" Step %d\n", step++);
printf (" Received_.value %d\n", t);
19 printf (”Computed_value %d\n", t / d);
}

Generated application is compiled for Intel (x86)
architecture and produces the following output dur-
ing execution:

Step 3
Received value
[KERNEL] Raise
Step O
Received value
Computed value
Sent value 8

5
divide by zero error

0
0

One may notice that when the faulty condition of
the application code ((t 4+ 1)%3 == 0, line 16 of the
user application code) is reached (in that case, when
receiving value 5), the receiver partition is restarted.
Initial value of variable step (printed in the line Step

12

N) is set back to 0, showing that the partition binary
has been re-loaded.

To assess the memory consumption of generated
systems, we also report generated kernel and parti-
tions sizes (see table below). Partitions size is sim-
ilar: they contain the same functionality and differ
only by their application code. Both of them have a
small size: 11kB for a complete system that embeds
run-time functions for the support of user applica-
tion. This demonstrates the lightweight aspect of the
approach. Kernel size is also very small, especially
for such a system that provides critical functions re-
garding safety and security issues.

Component Size
Kernel 26 kB
Partition 1 11 kB
Partition 2 11 kB

7 Conclusions & Perspectives

This article presents POK, a BSD-licensed operating
system that supports partitioning with time & space
isolation. It also provides layers to ease deployment
of existing code that uses established standards such
as POSIX or ARINC653.

Beyond the operating system itself, POK relies
on a complete tool-chain to automate its configura-
tion & deployment and ease partitioned systems de-
velopment. It aims at specifying system architecture
and properties using a modeling language, AADL
and verifying its requirements using dedicated anal-
ysis tools that process these specifications. Then,
from this validated specifications, our tool-chain au-
tomatically generates code that configures/deploys
kernel /partitions and execute application code pro-
vided by the user. This ensures specifications re-
quirements enforcement and avoid all errors related
to usual development process.

7.1 Perspectives

The domain of partitioned architecture is still emerg-
ing and there is many potential open perspectives.
On the kernel side, there is a need for more hardware
support (devices, architectures, etc.) and a wider
support of existing standards, as for the ARINC653
layer (for example, to support the second part of the
standard).

On the modeling and analysis part, there is a
strong need to connect AADL models with other

system representation or specifications. In particu-
lar, the production of AADL models could be au-
tomated from text-based specifications and model
components/entities could be associated to external
specifications such as DOORS. This would ease re-
quirements traceability, which is a special interest for
the design of high-integrity systems, when designers
have to ensure that high-levels requirements are cor-
rectly mapped in the implementation.

References

[1] Peter H. Feiler, David Gluch and John Hudak.
The Architecture Analysis and Design Language
(AADL): An Introduction. Technical report, 02
2006.

Airlines Electronic Engineering. Avionics Ap-
plication Software Standard Interface. Technical
report, Aeronautical Radio, INC, 1997.

SAE Architecture Analysis and Design Lan-
guage (AADL) Annex Volume 2

Fabrice Bellard. Qemu, a fast and portable dy-
namic translator. In ATEC 05: Proceedings of
the annual conference on USENIX Annual Tech-
nical Conference, pages 4141.

Julien Delange, Laurent Pautet and Fabrice
Kordon. Code Generation Strategies for Par-
titioned Systems. In 29th IEEE Real-Time
Systems Symposium (RTSS08), pages 5356,
Barcelona, Spain, December 2008. IEEE Com-
puter Society.

National Institute of Standards and Technology
(NIST). The Economic Impacts of Inadequate

13

Infrastructure for Software Testing. Technical
report, 2002.

[7] SAE. Architecture Analysis & Design Language
v2.0 (AS5506), September 2008.

[8] Windriver VxWorks -

http://www.windriver.com

[9] LynuxWorks LynxOS -
http://www.lynuxworks.com/rtos/

POK - http://pok.safety-critical.net
RTEMS - http://www.rtems.com

Global Descriptor Table - Wikipedia
Xtratum - http://www.xtratum. org

John Rushby - MILS Policy Architectures

Julien Delange, Laurent Pautet and Peter
Feiler. Validating safety and security require-
ments for partitioned architectures. In 14th
International Conference on Reliable Software
Technologies - Ada Europe, June 2009

Biba, K.J. - Integrity considerations for secure
computer systems. Technical report, MITRE

Bell, D.E., LaPadula, L.J. - Secure computer
system: Unified exposition and multics inter-
pretation. Technical report, The MITRE Cor-
poration (1976)

[18] Julien Delange - Intégration de la securité et de
la sureté de fonctionnement dans la construction

d’intergiciels critiques - PhDThesis

[19] Olivier Gilles and Jérome Hugues - Validating
requirements at model-level in Ingnierie Dirige

par les modles (IDM08)

http://www.windriver.com
http://www.lynuxworks.com/rtos/
http://pok.safety-critical.net
http://www.rtems.com
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://www.xtratum.org
http://www.csl.sri.com/~rushby/slides/og-jul08.pdf

	Introduction
	Problems & Approach
	Problems
	Approach
	Related Work

	The POK execution platform
	Overview
	POK services
	Time isolation policy
	Space isolation and inter-partitions communication
	Device drivers implementation
	Configuration flexibility

	Partitioned System Modeling
	AADL
	Tailoring the AADL for partitioned architectures
	System validation

	Automatic Configuration & Deployment of Partitioned Architectures
	Code generation Overview
	Kernel and partitions configuration
	Behavior code generation
	Benefits of Code Generation

	Case-Study
	Overview
	AADL modeling
	AADL model validation
	Code generation & metrics

	Conclusions & Perspectives
	Perspectives

