
”Open Proof” for Railway Safety Software

A Potential Way-Out of Vendor Lock-in Advancing to Standardization, Transparency, and

Software Security.

Klaus-Rüdiger Hase
Deutsche Bahn AG

Richelstrasse 3, 80634 München, Germany

Klaus-Ruediger.Hase {at} DeutscheBahn {dot} com

Abstract

”Open Proof (OP) is a new approach for safety and security critical systems and a further develop-
ment of the Open Source Software (OSS) movement, not just applying OSS licensing concepts to the final
software products itself, but also to the entire life cycle and all software components involved, includ-
ing tools, documentation for specification, verification, implementation, maintenance and in particular
including safety case documents. A potential field of applying OP could be the European Train Control
System (ETCS) the new signaling and Automatic Train Protection (ATP) system to replace some 20
national legacy signaling systems in all over the European Union. The OP approach might help manufac-
turers, train operators, infrastructure managers as well as safety authorities alike to eventually reach the
ambitious goal of an unified fully interoperable and still affordable European Train Control and Signaling
System, facilitating fast and reliable cross-border rail traffic at state of the art safety and security levels.

Keywords: ATC, ATP, Critical Software, Embedded Control, ETCS, EUPL, FLOSS, Open Proof,
openETCS, Train Control, Standardization.

1 Introduction

The European Train Control System (ETCS, [1])
is intended to replace several national legacy sig-
naling and train control systems all across Europe.
The system consists of facilities in infrastructure
and on-board units (OBU). Especially for the ETCS
on-board equipment the degree of functional com-
plexity to be implemented is expected to be sig-
nificantly higher than in conventional systems. In
terms of technology, this is mostly done by software
in so-called embedded control system implementa-
tions. While electronic hardware is getting continu-
ously cheaper, the high complexity of the safety crit-
ical software has caused significant cost increases for
development, homologation and maintenance of this
technology. This has raised questions for many rail-
way operators with respect to the economy of ETCS
in general.

The key element for improving that situation
seems to be a greater degree of standardization in
particular for the ETCS onboard equipment on var-
ious levels: Hardware, software, methods and tools.
Standardization by applying open source licensing
concepts will be the focus of this paper.

1.1 From National Diversity to Euro-
pean Standard

Looking back into history of signaling and automatic
train protection (ATP) for mainline railways sys-
tems, in the past 40 years a major change in tech-
nology has taken place. In the early days of ATP
almost all functions were implemented in hardware,
starting with pure mechanical systems, advancing
to electromechanical components and later on us-
ing solid state electronics, like gates, amplifiers, and

other discrete components. Software was not an issue
then. Beginning in the late 1970 years an increasing
number of functions were shifted into software, exe-
cuted by so called micro computers. Today the ac-
tual functions of such devices are almost entirely de-
termined by software. The dramatic performance in-
crease of microcomputers in the past 30 years on the
one hand and rising demand for more functionality
on the other hand, has caused a significant increase in
complexity of those embedded control systems - how
such devices are usually called. Furthermore, the
development from purely monitoring safety protec-
tion systems, like the German INDUSI (later called
PZB: Punktfrmige Zug-Beeinflussung) or similar sys-
tems in other European countries, which only mon-
itor speed at certain critical points and eventually
stop the train, if the driver has missed a halt signal
or has exceeded a safe speed level, to a more or less
(semi) Automatic Train Control (ATC) systems like
the German continuous train control system, called
LZB (Linien-Zug-Beeinflussung), which has increas-
ingly shifted safety responsibility from the infras-
tructure into the vehicle control units. Displaying
signal commands inside the vehicle on certain com-
puter screens, so called cab signaling, has resulted
in greater independence from adverse weather con-
ditions.

FIGURE 1: Europes challenge is to substi-
tute more than 20 signaling and ATP systems
by just one single system, ETCS, in order to
provide border crossing interstate rail transit
in all over the European Union.

In all over Europe there are more than 20 differ-
ent mostly not compatible signaling and train pro-
tection systems in use (figure 1). For internationally
operating high speed passenger trains or cargo lo-
comotives up to 7 different sets of equipment have
been installed, just to operate in three or four coun-
tries. Since each of those systems have their own
antennas to sense signals coming from the way-side
and their own data processing units and display in-
terfaces, space limitations are making it simply im-
possible to equip a locomotive for operation in all
EU railway networks, not to mention prohibitive cost

figures for such equipment. Furthermore, some of
the systems are in use for more than 70 years and
may not meet todays expected safety level. Some
are reaching their useful end of life causing obsoles-
cence problems.

For a unified European rail system it is very
costly to maintain this diversity of signaling systems
forever and therefore the European Commission has
set new rules by so called Technical Specifications
for Interoperability (TSI) with the goal to implement
a unified European Train Control System, which is
part of the European Rail Traffic Management Sys-
tem (ERTMS), consisting of ETCS, GSM-R, a cab
radio system based on the GSM public standard en-
hanced by certain rail specific extensions and the Eu-
ropean Traffic Management Layer (ETML). Legacy
ATP or so called Class B systems are supposed to be
phased out within the next decades.

1.2 ETCS: A new Challenge for Eu-
ropes Railways

Before launching the ETCS program, national op-
erational rules for the railway operation were very
closely linked with the technical design of the sig-
nal and train protection systems. That is going to
change radically with ETCS. One single technology
has to serve several different sets of operational rules
and even safety philosophies.

The experience of Deutsche Bahn AG after Ger-
man reunification has made very clear that it will
take several years or even decades to harmonize op-
erational rules in all over Europe. Even under nearly
ideal conditions (one language, one national safety
board and even within one single organization) it
was a slow and laborious process to convert different
rules and regulations back into one set of unified op-
erational rules. After 40-years of separation into two
independent railway organizations (Deutsche Reichs-
bahn in the east and Deutsche Bundesbahn, west),
it took almost 15 years for Deutsche Bahn AG to get
back to one single unified signaling handbook for the
entire infrastructure of what is today DB Netz AG.

Therefore, it seem unrealistic to assume that
there will be one set of operational rules for all ETCS
lines in all over Europe any time soon (Which does
not mean that these efforts should not be started as
soon as possible, but without raising far too high ex-
pectations about when this will be accomplished.).
That means, in order to achieve interoperability by
using a single technical solution: This new system
has to cope with various operational regimes for the
foreseeable future. Beside this, for more than a

decade there will be hundreds of transition points be-
tween track sections equipped with ETCS and sec-
tions with one of several different legacy systems.
This will cause an additional increase of functional
complexity for onboard devices.

1.3 Technology is not the Limiting
Factor

With state of the art microcomputer technology,
from a technological point of view, this degree of
complexity will most likely not cause any perfor-
mance problems since the enormous increase in per-
formance of microcomputer technology in recent
years can provide more than sufficient computing
power and storage capacity at an acceptable cost
level; to master complex algorithms and a huge
amount of data.

The real limiting factor here is the human brain
power. In the end it is the human mind, which
has to specify these functions consistently and com-
pletely, then provide for correct designs, implement
them and ultimately make sure that the system is
fit for its purpose and can prove its safety and secu-
rity. The tremendous increase in complexity, absorb-
ing large numbers of engineering hours is one reason
why we are observing cost figures for R&D, testing
and homologation of the software components in var-
ious ETCS projects that have surpassed all other
cost positions for hardware design, manufacturing
and installation. This has caused a substantial cost
increase for the new onboard equipment compared
with legacy systems of similar functionality and per-
formance.

Normally we would expect from any new technol-
ogy a much better price to performance ratio than
for the legacy technology to be replaced. Due to the
fact, that this is obviously not the case for ETCS,
makes it less attractive for those countries and infras-
tructure managers, who have already implemented
a reliably performing and sufficiently safe signaling
and train control system. In addition there is no im-
provement expected for ETCS with respect to per-
formance and safety compared with service proven
systems like LZB and PZB. In order to reach the
goal of EU-wide interoperability soon, the EU Com-
mission has implemented legal measures, regulating
member states policies for infrastructure financing
and vehicle homologation. While in the long run,
ETCS can lower the cost for infrastructure opera-
tors, especially for Level 2 implementations making
conventional line signals obsolete, the burden of cost
increase stays with the vehicle owners and operators.

Therefore it became an important issue for vehi-
cle operators to identify potential cost drivers and
options for cost reduction measures, so as not to
endanger the wellintentioned general goal of unre-
stricted interoperability.

2 Software in ETCS Vehicle
Equipment

As discussed above, state of the art technology re-
quires for almost all safety critical as well as non-
safety related functions to be implemented in soft-
ware. The end-user will normally receive this soft-
ware not as a separate package, but integrated in
his embedded control device. Therefore software is
usually only provided in a format directly executable
by the built-in microprocessor, a patter of ones and
zeros, but therefore not well suited for humans to
understand the algorithm. The original source code,
a comprehensible documentation format of this soft-
ware, which is used to generate the executable code
by a compiler and all needed software maintenance
tools are usually not made available to the users.
Manufacturers are doing this, because they believe
that they can protect their high R&D investment
this way.

2.1 Impact of Closed Source Software

However concealment of the software source code
documentation has increasingly been considered as
problematic, not only for economical reasons for the
users, but more and more for safety and security rea-
sons as well. Economically it is unsatisfactory for the
operators to remain completely dependent from the
original equipment manufacturer (OEM), no matter
whether software defects have to be fixed or func-
tions to be adapted due to changing operational re-
quirements. For all services linked to these embed-
ded control systems there is no competitive market,
since bundling of non-standard electronic hardware
together with closed source or proprietary software
makes it practically and legally impossible for third
parties to provide such service. This keeps prices at
high levels. While malfunctions and vulnerability of
software products, allowing malware (malicious soft-
ware: as there are viruses, trojans, worms etc.) to
harm the system, can be considered as quality defi-
ciencies, which can practically not be discovered in
proprietary software by users or independent third
parties, whereas the question of the vendor lock-in
due to contractual restrictions and limiting license
agreements is generally foreseeable, but due to gen-

erally accepted practices in this particular market,
hardly to be influenced by individual customers (e.g.
railway operators). Especially security vulnerability
of software must be considered as a specific char-
acteristic of proprietary or closed source software.
So-called End User License Agreements (EULA) do
usually not allow end-users to analyze copy or redis-
tribute the software freely and legally. Even anal-
ysis and improvement of the software for the users
own purposes is almost generally prohibited in most
EULAs. While on the one hand customers who
are playing by the rules are barred from analyz-
ing and finding potential security gaps or hazardous
software parts and therefore not being able to con-
tribute to software improvements, even not for ob-
vious defects, however the same legal restrictions on
the other hand do not prevent bad guys from disas-
sembling (a method of reverse-engineering) and an-
alyzing the code by using freely available tools, in
order to search for security gaps and occasionally (or
better: mostly) being successful in finding unautho-
rized access points or so-called backdoors. Intention-
ally implemented backdoors by irregularly working
programmers or just due to lax quality assurance en-
forcement or simply by mistake are causing serious
threats in all software projects. In most cases in-
tentionally implemented backdoors are hard to find
with conventional review methods and testing pro-
cedures. In a typical proprietary R&D environment
only limited resources are allocated in commercial
projects for this type of security checks and there-
fore stay most likely undiscovered. That backdoors
cannot be considered as a minor issue, has been dis-
cussed in various papers [2, 3, 4, 5] and has already
been identified as a serious threat by the EU Parlia-
ment, which has initiated resolution A5-0264/2001
in the aftermath of the Echelon interception scan-
dal, resulting in following recommendations [6]:

... Measures to encourage self-protection by citi-
zens and firms:

29. Urges the Commission and Member States
to devise appropriate measures to promote ... and
... above all to support projects aimed at develop-
ing user-friendly open-source encryption soft-
ware;

30. Calls on the Commission and Member States
to promote software projects whose source text is
made public (open-source software), as this is
the only way of guaranteeing that no back-
doors are built into programmes;

31. Calls on the Commission to lay down a stan-
dard for the level of security of e-mail software
packages, placing those packages whose source

code has not been made public in the least
reliable category; ...

This resolution was mainly targeting electronic
communication with private or business related con-
tent, which most likely will not hurt people or en-
danger their lives. However a recent attack by the so
called STUXNET worm [7], a new type of highly so-
phisticated and extremely aggressive malware, which
in particular was targeting industrial process control
systems via its tools chain, even in safety critical ap-
plications (chemical and nuclear facilities). Systems,
which are very similar in terms of architecture and
software design standards with signaling and inter-
locking control systems. This incident has demon-
strated that we have to consider such impact in rail-
way control and command systems as well, commer-
cially and technically.

2.2 Software Quality Issues in ETCS
Projects

Despite a relatively short track record of ETCS in
revenue service we had already received reports on
accidents caused by software defects, like the well
documented derailment of cargo train No. 43647
on 16 October 2007 at the Ltschberg base line in
Switzerland [8]. German Railways has been spared
so far from software errors with severe consequences,
possibly due to a relatively conservative migration
strategy. During the past 40 years, software was only
introduced very slowly in small incremental steps
into safety-critical signaling and train protection sys-
tems and carefully monitored over years of operation,
before rolled out in larger quantities. Software was
more or less replacing hard-wired circuits with rel-
atively low complexity based on well serviceproven
functional requirement specifications over a period
of four decades. With ETCS however, a relatively
large step will be taken: Virtually all new vehicles
have to be equipped with ETCS from 2015 on, en-
forced by European legal requirements, despite the
fact that no long-term experience has been made.
The ongoing development of the functional ETCS
specification as well as project specific adaptations to
national or line-specific conditions has resulted in nu-
merous different versions of ETCS implementations
not fully interoperable. Up to now, there is still no
single ETCS onboard equipment on the market that
could be used on all lines in Europe, which are said
to be equipped with ETCS. That means that the
big goal of unrestricted interoperability would have
been missed, at least until 2010. The next major re-
lease of the System Requirements Specification (SRS
3.0.0), also called ”baseline 3”, is expected to elim-

ination those shortcomings. Baseline 3 has another
important feature: Other than all previous SRS ver-
sions, which have been published under the copyright
of UNISIG, an association of major European sig-
naling manufacturers, SRS 3.0.0 in the opposite has
been published as an official document by the Euro-
pean Railway Agency (ERA) a governmental orga-
nization implemented by the European Commission.
This gives the SRS a status of a public domain docu-
ment. That means, everyone in Europe is legally en-
titled to use that information in order to build ETCS
compliant equipment.

2.3 Quality Deficiencies in Software
Products

Everyone who has ever used software products knows
that almost all software has errors and no respectable
software company claims, that their software is to-
tally free of defects. There are various opportunities
to make mistakes during the life cycle of software
production and maintenance: Starting with System
Analysis, System Requirement Specification, Func-
tional Requirement Specification, etc., down to the
software code generation, integration, commission-
ing, operation and maintenance phases. A NASA
Study on Flight Software Complexity [12] shows con-
tribution to bug counts, which can be expected in
different steps of software production (figure 2).

FIGURE 2: Propagation of residual de-
fects (bugs) as a result of defect insertion and
defect removal rates during several stages of
the software production process, according to
a NASA research on high assurance software
for flight control units for each 1000 lines of
code (TLOC) [12].

Figure 3 characterizes the actual situation in the
European signaling industry with several equipment
manufacturers working in parallel, using the same
specification document in natural language precision
giving room for interpretation, combined with differ-
ent ways and traditions of making mistakes, result-
ing in a low degree of standardization, even for those
components, which cannot be used for product dif-
ferentiation (core functionality according to UNISIG

subset 026 [1]). Since all or at least most of the
documents are created by humans, there is always
the human factor involved, causing ambiguities and
therefore divergent results. Herbert Klaeren refers
to reports in his lecture [9], which have found an av-
erage of 25 errors per 1000 Lines Of programming
Code (TLOC) for newly produced software. The
book Code Complete by Steve McConnell has a brief
section about errors to be expected. He basically
says that there is a wide range [10]:

(a) Industry Average: ”about 15 - 50 errors per
1000 lines of delivered code.” He further says this
is usually representative of code that has some level
of structured programming behind it, but probably
includes a mix of coding techniques.

(b) Microsoft Applications: ”about 10 - 20 de-
fects per 1000 lines of code during inhouse testing,
and 0.5 defect per TLOC in released products [10].”
He attributes this to a combination of code-reading
techniques and independent testing.

(c) ”Harlan Mills pioneered a so called ’clean
room development’, a technique that has been able
to achieve rates as low as 3 defects per 1000 lines
of code during in-house testing and 0.1 defect per
1000 lines of code in released product (Cobb and
Mills 1990 [11]). A few projects - for example, the
space-shuttle software - have achieved a level of 0 de-
fects in 500,000 lines of code using a system of formal
development methods, peer reviews, and statistical
testing.”

FIGURE 3: Divergent interpretation of
a common public domain ETCS System Re-
quirement Specification (SRS) document, due
to the human factor by all parties involved,
causing different software solutions with de-
viant behavior of products from different man-
ufacturers, which result in interoperability de-
ficiencies and costly subsequent improvement
activities.

However the U.S. space shuttle software program
came at a cost level of about U.S. $ 1,000 per line of
code (3 million LOC 3 billion U.S. $ [9], cost ba-
sis 1978), not typical for the railway sector, which is
more in a range between 30 per LOC for non-safety
applications and up to 100 for SIL 3-4 quality (SIL:
Safety Integrity Level) levels.

2.4 Life Cycle of Complex Software

While on the one hand, electronic components are
becoming increasingly powerful, yet lower in cost,
on the other hand, cost levels of complex software
products are increasingly rising not only because the
amount of code lines need tremendous men power,
but for those lines of code a poof of correctness, or
also called safety case, has to be delivered in order
to reach approval for operation in revenue service.
Some manufacturers have already reported software
volumes of over 250 TLOC for the ETCS core func-
tionality defined by ETCS SRS subset 026 [1]. It is
very difficult to receive reliable statistics about er-
rors on safety related soft- ware products, because
almost all software manufacturers hide their source
code using proprietary license agreements. However
we can assume that software in other mission critical
systems, like communication servers, may have the
same characteristics with respect to bug counts. One
of those rare examples published, was taken from an
AT&T communication software project, which from
its size is in the same order of magnitude as todays
ETCS onboard software packages (figure 4) [9],[13].
One particular characteristic in figure 4 is quite ob-
vious: The size of the software is continuously grow-
ing from version to version, despite the fact that this
software was always serving the same purpose. Start-
ing with a relatively high bug count of almost 1000
bugs in less than 150 TLOC, the software matures af-
ter several release changes and is reaching a residual
bug density, which is less than a tenth of the initial
bug density. During its early life the absolute num-
ber of bugs is oscillating and stabilizes in its more
mature life period. At a later phase of the life cy-
cle the absolute number of bugs is slightly growing
despite a decreasing bug density. The late life-cycle
bug density is mainly determined by the effectiveness
and quality measures taken on the one hand and the
number of functional changes and adaptations built
in since last release on the other hand. The actual
number of bugs is often unknown and can only sub-
sequently been determined.

FIGURE 4: Bug fixing history and growth
statistics of an AT&T communication server
software package over a life cycle of 17 releases
[9], [13].

Even though that extensive testing has been and
still is proposed as an effective method for detecting
errors, it has become evident, that by testing alone
the correctness of software cannot be proven, because
tests can only detect those errors for which the test
engineer is looking for [14]. This means ultimately
that there is no way to base a safety case on testing
alone, because the goal is not to find errors, but to
prove the absence of errors. One of the great pio-
neers of software engineering, Edsgar W. Dijkstra,
has put it into the following words [15]:

Program testing can be a very effective way to
show the presence of bugs, but is hopelessly inade-
quate for showing their absence.

We have even to admit that at the current state
of software technology, there is no generally accepted
single method to prove the correctness of software
that means, there is no way to prove the absence of
bugs, at least not for software in a range of 100 TLOC
or more. The only promising strategy for minimizing
errors is:

• The development of functional and design spec-
ifications (architecture) has to be given top pri-
ority and needs adequate resources,

• The safety part of the software has to be kept
as small as possible, and

• The software life-cycle has to undergo a broad
as possible, manifold, and continuous review
process.

Successful software projects require for the first
point, the specification, at least between 20% and
40% [12] of the total development cost, depending
on the size of the final software package. Trying to

save at this point will almost certainly result in in-
flated costs during later project phases (see figure
5)

FIGURE 5: Fraction of the over all project
budgets spent on specification (architecture)
versus fraction of budget spend on rework +
architecture, which defines a so called sweet
spot where it reaches its minimum [12]. How-
ever this cost function does not take any poten-
tial damages into account, which might result
from fatalities caused by software bugs.

Formal modeling methods and close communica-
tion with the end-user may be helpful in this stage,
especially when operational scenarios can be mod-
eled formally as well in order to verify and validate
the design. Specification, modeling and reviews by
closely involving the customer may even require sev-
eral cycles in order to come to a satisfactory result.

FIGURE 6: Graph taken from a NASA
Study on Flight Software Complexity [12]
suggesting a reasonable limit for software
size, determine a level, which results in cer-
tainty of failure beyond this size (NCSL: Non-
Commentary Source Lines = LOC as used in
this paper).

Large railway operators in the opposite may have
several hundreds of trains, representing the same
level of material value (but carrying hundreds of pas-
sengers) operating at the same time. Assuming that
a mission critical failure in software of a particular

size may show up once in 1000 years, would mean
for a space mission duration of 1 year, a probability
for a mission failure of about 0,1% due to software
(equal distribution assumed). For the railway oper-
ator however, who operates 1000 trains at the same
time, having the same size and quality of software
on board may cause a mission failure event about
once a year, making drastically clear that code size
matters. While the third point is very difficult to
get implemented within conventional closed source
software projects, simply because highly qualified re-
view resources are always very limited in commercial
projects. Therefore errors are often diagnosed at a
late stage in the process. Their removal is expen-
sive and time consuming. That is why big software
projects often fail due to schedule overruns and cost
levels out of control and often even been abandoned
altogether. Never the less, continuous further devel-
opment and consistent use of quality assurance mea-
sures can result in a remarkable process of matura-
tion of software products, which is demonstrated by
the fact that in our example in figure 4 the bug den-
sity has been reduced by more than an order of mag-
nitude (initially above 6 bugs/TLOC down to below
0.5 bugs/TLOC). On the other hand, in a later stage
of the life cycle, due to the continuous growth of the
number of code lines, which seem to go faster than
the reduction of the bug density, a slight increase of
the total number of bugs, can be observed. Given
a certain methodology and set of quality assurance
measures on the one hand and a number of change
requests to be implemented per release, then this will
result in a certain number of bugs that remains in the
software. Many of those bugs stay unrecognized for-
ever. However some are also known errors, but their
elimination is either not possible for some reason or
can only be repaired at an unreasonably high level
of cost. The revelation of the unknown bugs can
take several thousand unit operation years (number
of units times number of years of operation) and must
be considered as a random process. That means for
the operator, that even after many years of flawless
operation, unpleasant surprises have to be expected
at any time. In Europe, in a not too distant future
up to 50,000 trains will operate with ETCS, carrying
millions of passengers daily, plus unnumbered trains
with hazardous material. Then the idea is rather
scary that in any of those European Vital Computers
(EVC), the core element of the ETCS vehicle equip-
ment, between 100 and 1000 undetected errors are
most likely left over, even after successfully passing
safety case assessments and after required authoriza-
tion has been granted. Even if we would assume,
that only one out of 100 bugs might eventually cause
a hazard [12], that still means 1 to 10 mission critical

defects per unit. Further more, there will be several
different manufacturer-specific variants of fault pat-
terns under way.

2.5 New Technologies Have to Have
At Least Same Level of Safety

According to German law (and equally most other
EU states) defined in the EBO (Eisenbahn Bau- und
Betriebsordnung: German railway building and op-
eration regulations) any new technology has to main-
tain at least the same safety level as provided by the
preceding technology [16]. Assuming that the more
complex ETCS technology requires about ten times
more software code than legacy technology like LZB
and PZB as an average and given the fact, that PZB
and LZB have already reached a very mature stage of
the software integrated after almost 3 decades of con-
tinues development, then it seams very unlikely, that
the at least same level of safety can be proven by us-
ing the same technical rules and design practices for
a relatively immature ETCS technology. In addition,
due to less service experience the criticality of devi-
ations from expected reaction patterns are difficult
to assess. This raises the question whether propri-
etary software combined with a business model that
sells the software together with the hardware device,
and then - as up to now - will be operated largely
without any defined maintenance strategy, might be
inadequate for such a gigantic European project. A
project eventually replacing all legacy, but well ser-
vice proven signaling and train protection systems
with one single unified, but less service proven tech-
nology, especially when independent verification and
system validation is only provided at rare occasions
by a very limited number of experts or ... then
again after a critical incident has taken place only?
Instead, a broad and continues peer review scheme
with full transparency in all stages of the life cycle of
ETCS on-board software products would be highly
recommended. In particular during the critical spec-
ification, verification and validation phases, following
the so called Linus’s Law, according to Eric S. Ray-
mond, which states that:

given enough eyeballs, all bugs are shallow.

More formally:

Given a large enough beta-tester and co-developer
base, almost every problem will be characterized
quickly and the fix will be obvious to someone.

The rule was formulated and named by Eric S.
Raymond in his essay The Cathedral and the Bazaar
[17]. Presenting the code to multiple developers with
the purpose of reaching consensus about its accep-

tance is a simple form of the software reviewing pro-
cess. Researchers and practitioners have repeatedly
shown the effectiveness of the reviewing process in
finding bugs and security issues [18].

2.6 Changing Business Model for
Software: From Sales to Service

Such problems can be solved by changing the busi-
ness model. Looking at software as a service rather
than a commodity or product (in its traditional defi-
nition) is justified by the fact that software is growing
continuously in size (but not necessarily increasing
the value to the user) as shown in figure 4. Over a
life-cycle of 17 releases, the total size of that soft-
ware grew by more than 300%. Furthermore, about
40% of the modules of the first release had to be
fixed or rewritten, due to one or more bugs per mod-
ule. That means only 60% of the original modules
were reusable for second or later releases. It is fair
to assume that half of the original 60% virtually bug
free code had to be adapted or otherwise modified
to use it for functional enhancements. This results
in not more than 30% of remaining code, which is
about 50 TLOC of the original code having a chance
to survive unchanged up to release No. 17. Big-
gerstaff [19] and Rix [20] suggest that these assump-
tions might even be too optimistic, as long as no
specific measures have been taken in order to sup-
port reusability of code. It can be assumed that a
potential sales price of all versions would be at the
same level, since all versions serve in principle the
same functions. That means during its life cycle only
10% (50 TLOC out of about 500 TLOC) of the fi-
nal code was left unchanged from the first version in
this particular example. In other words: 90% of the
work (code lines) has been added by software main-
tenance and continuous further development efforts
over the observed life cycle, which can be considered
as servicing the software. In order to make this a
viable business, users and software producers have
to contract so called service agreements for a cer-
tain period of time. This kind of business model
can be a win-win for both, users and manufacturers
alike. Manufacturers are generating continuous cash
flow, allowing them to maintain a team of experts
over an extended period of time, dedicated to con-
tinuously improving the software. Users in exchange
are having guaranteed access to a qualified technical
support team ensuring fast response in a case of crit-
ical software failures. Proprietary software makes it
mostly impossible for the user to switch software ser-
vice providers later on, but leave users in a vendor
lock-in situation with no competition on the software

service market. Competition however is the most ef-
fective driver for quality improvement and cost effi-
ciency.

Considering commercial, technical, safety and
security aspects, the risks associated with complex
closed source software should be reason enough for
the railway operators to consider alternatives, in par-
ticular when a large economic body, like the Euro-
pean Union, defines a new technological standard.
Watts Humphrey, a fellow of the Software Engineer-
ing Institute and a Recipient of the 2003 National
Medal of Technology (US), has put the general prob-
lem of growing software complexity in these words
[21]:

While technology can change quickly, getting
your people to change takes a great deal longer. That
is why the people-intensive job of developing soft-
ware has had essentially the same problems for over
40 years. It is also why, unless you do something,
the situation wont improve by itself. In fact, current
trends suggest that your future products will use more
software and be more complex than those of to- day.
This means that more of your people will work on
software and that their work will be harder to track
and more difficult to manage. Unless you make some
changes in the way your software work is done, your
current problems will likely get much worse.

3 Proposal: Free / Libre Open
Source Software for ETCS

A promising solution for the previously described dif-
ficulties could be given by providing an Open Source
ETCS onboard system, making the embedded soft-
ware source code and relevant documentation open
to the entire railway sector. Open Source Software,
Free Software or Libre Software more often called
Free/Libre Open Source Software short: FLOSS [22],
is software that:

• Can be used for any purpose,

• Can be studied by analyzing the source code,

• Can be improved and modified and

• Can be distributed with or without modifica-
tions.

This basic definition of FLOSS is identical to the
Four Freedoms, with which the Free Software Foun-
dation (FSF, USA, [23]) has defined free software and
is in line with the open source definition formulated
by the Open Source Initiative (OSI) [24].

3.1 Public License for an European
Project

A potential candidate for a license agreement text
could be the most widely used General Public Li-
cense (GPL) or occasionally called GNU Public Li-
cense, which has been published by the Free Soft-
ware Foundation [23]. Because this license text (and
several similar license texts as well) is based on the
Anglo-American legal system. In Europe applica-
bility and enforceability of certain provisions of the
GPL are considered as critical by many legal experts.
The European Union has recognized this problem
some time ago and has issued the European Union
Public License text [25], which not only is available
in 22 official EU languages, but is adapted to the
European legal systems, so that it meets essential
requirements for copyright and legal liability issues.
The EU Commission recommends and uses this par-
ticular License for its own European eGovernment
Services project (iDABC [26]). A key feature of the
aforementioned license types is the so-called strong
”Copy Left” [27]. The Copy-Left requires a user who
modifies, extends or improves the software and dis-
tributes it for commercial or non-profit purposes, to
make also the source code of the modified version
available to the community under the same or at
least equivalent license conditions, which has applied
to the original software. That means everybody will
get access to all improvements and further develop-
ments of the software in the future. The distribu-
tion in principle has to be done free of charge, how-
ever add-on services for a fee are permissible. That
means for embedded control systems, that software-
hardware integration work, vehicle integration, ho-
mologation and authorization costs can be charged
to the customer as well as service level agreements
for a fee are allowed within the EUPL. By apply-
ing such license concept to the core functionality of
the ETCS vehicle function as defined and already
published in UNISIG subset 026 of the SRS v3.0.0
[1] all equipment manufacturers as well as end-users
would be free to use this ETCS software partly or
as a whole in their own hardware products or own
vehicles. Due to the fact that a software package of
substantial value would be then available to all par-
ties, there would be not much incentive any more for
newcomers to start their own ETCS software devel-
opment project from scratch, but would more likely
participate in the OSS project and utilize the effect
of cost sharing. Also established manufacturers, who
already may have a product on their own, might
consider sharing in for all further add-on functions
by trying to provide an interface to the OSS soft-
ware modules with their own existing software. This

will result in some kind of an informal or even for-
mally set up consortium of co-developing firms and
a so called open source eco-system around this core
is most likely to evolve. This has been demonstrated
by many similar FLOSS projects. The effect of coop-
eration of otherwise in competition operating firms,
based on a common standard core product, is often
called co-competition. In analogy with other similar
open projects the name openETCS has been sug-
gested for such a project. Occasionally expressed
concern that such a model would squander costly
acquired intellectual property of the manufacturers
to competitors does not really hit the point, because
on the one hand the essential functional knowledge,
which is basically concentrated in the specification,
has already been published by UNISIG and ERA
within the SRS and cannot be used as unique selling
point. On the other hand implementation know-how
for specific hardware architecture and vehicle inte-
gration as well as service knowledge will not be af-
fected and has the potential to become part of the
core business for the industry. In addition, for the
pioneering manufacturer open up his own software
could not be better investment money, if this soft-
ware becomes part of an industrial standard, which
is very likely (if others are not quickly following this
move) as demonstrated several times in the software
industry. Not only that, but since safety related soft-
ware products are closely related to the design pro-
cess, tools and quality assurance measures, the pio-
neering OSS supplier would automatically make his
way of designing software to an industrial standard
as well (process standardization). Late followers had
simply to accept those procedures and may end up
with more or less higher switching costs, giving the
pioneer a head start. Even in the case that one or
two competitors would do the same thing quickly,
those companies could form a consortium sharing
their R&D cost and utilizing the effect of quality im-
proving feedback from third parties and therefore im-
proving their competitive position compared to those
firms sticking with a proprietary product concept.
The UNUMERIT study on FLOSS [22] has shown
cost lowering (R&D average of 36%) and quality im-
proving effects of open source compared with closed
source product lines.

3.2 ETCS Vehicle On-Board Units
with openETCS

Software that comes with a FLOSS license and a
Copy-Left, represent some kind of a gift with a com-
mitment, namely as such that the donor has almost
a claim to receive any improvements made and fur-

ther distributed by the recipient. That means all the
technical improvements, which have been based on
collective experiences of other users/developers and
integrated into product improvements need to be dis-
tributed so that even the original investor gets the
benefits. By recalling the fact that during the life
cycle of a large software product, as shown in fig-
ure 4, more than 90% of the code and improvements
were made after the first product launch, means that
sharing the original software investment with a com-
munity (eco-system) becomes a smart investment for
railway operators and manufacturers alike, by sim-
ply reducing their future upgrade and maintenance
costs significantly. Rather than starting to develop a
new open source software package from scratch, the
easiest and fastest way for a user to reach that goal
would be simply by selecting one of the already exist-
ing and (as far as possible) service proven products
from the market and put it under an appropriate
open source license. There are numerous examples
from the IT sector, such as the software development
tool Eclipse, the successor to IBMs Visual Age for
Java 4.0., source code was released in 2001 [28], the
Internet browser Mozilla FireFox (former: Netscape
Navigator), and office communication software Open
Office (former: StarOffice) and many more.

3.3 Tools and Documents Need to be
Included

In the long term it will not be enough only to make
the software in the on-board equipment open. Tools
for specification, modeling and simulation as well
as software development, testing and documentation
are also essential for securing quality and lowering
life cycle cost. To meet the request for more compe-
tition in the after sales software service business and
avoiding vendor lock-in effects, requires third par-
ties to be in a position to maintain software, prepare
safety case documents, and get the modified software
authorized again without depending on proprietary
information. A request no one would seriously deny
for other safety critical elements e.g. in the mechani-
cal parts section of a railway vehicle, like loadbearing
car body parts or wheel discs. The past has shown
that software tools are becoming obsolete quite often
due to new releases, changing of operating systems,
or tool suppliers simply going out of business, leav-
ing customers alone with little or no support for their
proprietary products. Railway vehicles are often in
revenue service for more than 40 years and electronic
equipment is expected to be serviced for at least 20
years and tools need to be up to the required techni-
cal level for the whole period. The aircraft industry

with similar or sometimes even longer product life-
cycles has realizing this decades ago, starting with
ADA compiler in the 1980th, specifically designed
for developing high assurance software for embedded
control design projects, originally initiated by the US
Air Force and developed by the New York Univer-
sity (GNAT: GNU NYU Ada Translator), which is
available in the public domain and further developed
by AdaCore and the GNU Project [3], [23] and a
somewhat more sophisticated tools chain, which is
called TOPCASED, initiated by AIRBUS Industries
[29]. TOPCASED represents a tools set, based on
ECLIPSE (another OSS software development tools
platform [28]) for safety critical flight control applica-
tions with the objective to cover the whole life cycle
of such software products, including formal specifica-
tion, modeling, software generation, verification and
validation, based on FLOSS in order to guarantee
long term availability. TOPCASED seams to be a
reasonable candidate for a future openETCS refer-
ence tools platform, since it is a highly flexible open
framework, adaptable in various ways for meeting a
wide range of requirements. Today manufacturers in
the rail segment are using a mix of proprietary and
open source tools, since some software development
tools like ADA and other Products from the GNU
Compiler Collection (GCC) [24] have already been
used in several railway projects. Even FLOSS tools,
not specifically designed for safety applications, like
BugZilla for bug tracing and record keeping, have
already been found its way into SIL 4 R&D pro-
grams for railway signaling [30]. The importance
of qualified and certified tools is rising, since it be-
came obvious, that poor quality tools or even mal-
ware infected tools can have a devastating effect on
the quality of the final software product. 6.6 of pro-
posed prEN 50128:2009 norm [31], modification and
change control, requires to take care of the software
development tools chain and processes, which in the
future formally have to comply with requirements
for the respective SIL level of the final product. Re-
cent news about the STUXNET attack, a type of
malware (worm) specifically designed to target in-
dustrial process control computers via its tools chain
(maintenance PCs with closed source operating sys-
tem) has made pretty clear, that no one can be lulled
into security even not with control and monitoring
systems designed for safety critical embedded appli-
cations [7]. Ken Thompson, one of the pioneers of the
B Language, a predecessor of C, and UNIX operating
system design has demonstrated in his Reflections on
Trusting Trust [2] that compilers can be infected with
malicious software parts in a way that the resulting
executable software (e.g. an operating system) gen-
erated by this compiler out of a given clean (means:

free of malware) source code, can be infected with
a backdoor, almost invisible for the programmer. It
took several years of research until David A. Wheeler
suggested in his dissertation thesis (2009) a method
called Diverse Double-Compiling [32], based on open
source tools for countering the so called Thomson
Hack. Therefore Wheeler suggests on his personal
website:

Normal mathematicians publish their proofs, and
then depend on worldwide peer review to find the er-
rors and weaknesses in their proofs. And for good
reason; it turns out that many formally published
math articles (which went through expert peer review
before publication) have had flaws discovered later,
and had to be corrected later or withdrawn. Only
through lengthy, public worldwide review have these
problems surfaced. If those who dedicate their lives
to mathematics often make mistakes, its only reason-
able to suspect that software developers who hide their
code and proofs from others are far more likely to get
it wrong. ... At least for safety-critical work making
FLOSS (or at least world-readable) code and proofs
would make sense. Why should we accept safety soft-
ware that cannot undergo worldwide review? Are
mathematical proofs really more important than soft-
ware that protects peoples lives? [3]

3.4 Open Proof the ultimate Objec-
tive for openETCS

Wheelers statement confirms the need for an open
source tools chain to cover the software produc-
tion and documentation process for verification and
validation into the open source concept in total,
providing an Open Proof (OP) methodology [33].
OP should be then the ultimate objective for an
openETCS project, in order to make the system as
robust as possible for reliability, safety as well as for
security reasons. An essential precondition for any
high quality product is an un-ambiguous specifica-
tion. Until this day only a written more or less-
structured text in natural language is the basis for
ETCS product development, leaving more room for
divergent interpretation (figure 3) than desirable. A
potential solution for avoiding ambiguities right in
the beginning of the product development process
could be the conversion into a formal that means
mathemati- cal description of the functional require-
ment specification. As recommended by Jan Peleska
in his Habiltationsschrift (post doctorial thesis) [34]:

... how the software crisis should be tackled in
the future:

• The complexity of today’s applications can only
be managed by applying a combination of meth-
ods; each of them specialised to support specific
development steps in an optimised way during
the system development process.

• The application of formal methods should be
supported by development standards, i.e., ex-
planations or ”recipes” showing how to apply
the methods in the most efficient way to a spe-
cific type of development task....

• The application of formal methods for the de-
velopment of dependable systems will only be-
come cost-effective if the degree of re-usability
is increased by means of re-usable (generic)
specifications, re-usable proofs, code and even
re-usable development processes.

Despite the fact that several attempts have been
made in the past, a comprehensive Formal Func-
tional Requirement Specification (FFRS) has never
been completed for ETCS due to lack of resources
and/or funding. Based on proprietary software busi-
ness concepts there is obviously not a positive busi-
ness case for suppliers for a FFRS. Formal specifica-
tion works does not have to be started from scratch,
because there are already a number of partial results
from a series of earlier work, although that differ-
ent approaches, methods and tools have been used
[35], [36], [37]. Evaluating those results and trying to
apply a method successfully applied in several open
source projects and known as a so called Stone Soup
Development Methodology might be able to bring all
those elements and all experts involved together in
order to contribute to such project at relatively low
cost [3], [38].

3.5 Formal Methods to validate Spec-
ification for openETCS

In the first step of formalization only a generic,
purely functional and therefore not implementation
related specification has to be developed. This can
be mainly done in the academic sector and by R&D
institutes. However railway operators have to feed in
their operational experience, in order to make sure
that man-machine-interactions and case studies for
test definitions are covering real life operational sce-
narios and not only synthetic test cases of solely aca-
demic interest.

FIGURE 7: Proposed openETCS based on
ERAs base line 3 SRS natural English speci-
fication text (= prose) converting into a for-
mal functional specification to define software
for modeling as well as embedded control in-
tegration, providing equipment manufacturers
to integrate the openETCS kernel software via
API into their particular EVC hardware de-
sign.

For verification purposes a test case data base
need to be derived from the functional specification
and supplemented by a response pattern data base,
which defines the expected outcome of a certain test
case. That database needs to be open for all par-
ties and should collect even all real world cases of
potentially critical situations and in particular those
cases, which have already caused safety relevant inci-
dents. That means this type of formalized database
will keep growing and continuously being completed
to make sure that all lessons learned are on record
for future tests. State of the art formal specifica-
tion tools do not only provide formatting support
for unambiguous graphical and textual representa-
tion of a specification document, but provide also a
modeling platform to execute the model in a more
or less dynamical way. This modeling can be used
to verify the correctness and integrity of the ETCS
specification itself not only statically, but also dy-
namically. In addition transitions to and from class
B systems need to be specified formally as well and
that might depend on national rules, even in those
cases where the same class B system is used (e.g.
for PZB-STMs hot stand-by functions are handled
differently in Germany and Austria). Based on a
particular reference architecture the resulting formal
functional specification can be transformed in a for-
mal software specification and then converted into

executable software code. Even without existing real
target hardware, those elements can be used to sim-
ulate the ETCS behavior and modeling critical oper-
ational test cases in a so called Software-in-the-Loop
modeling set-up. Once the specification of the func-
tionality has been approved and validated, the code
generation can be done for the EVC embedded con-
trol system. Standardization can be accomplished
by providing an Application Programmer Interface
(API) similar to the approach successfully applied
in the automotive industry within the AUTOSAR
project [39] or for industrial process control systems
based on open Programmable Logic Control (PLC)
within the PLCopen project [40] including safety
critical systems. In addition to the software speci-
fication, generation, verification and validation tools
chain also tools for maintenance (parameter setting,
system configuration, software upload services) have
to be included in the OSS concept, as shown in figure
7.

3.6 How FLOSS can meet Safety and
Security Requirements

For many railway experts, not familiar with open
source development methodology, open source is of-
ten associated with some kind of chaotic and arbi-
trary access to the software source code by ama-
teur programmers (hackers), completely out of con-
trol and therefore not suited for any kind of qual-
ity software production. This may have been an
issue of the past and still being in existence with
some low level projects, adequate for their purpose.
However since OSS license and R&D methodologies
concepts have successfully been applied to unnum-
bered serious business projects, even for the highest
safety and security levels for governmental admin-
istration, e.g. within the iDABC, European eGov-
ernment Services Project [26] as well as commercial,
avionics [29] and military use [24], a concept based
on a group of qualified and so called Trusted De-
velopers (figure 8) having exclusively access to a so
called Trusted Repository, which on the other hand
can be watched and closely monitored by a large
community of developers, being able to post bug re-
ports and other findings visible to the whole commu-
nity, has made this so called bazaar process [17] to a
much more robust methodology compared with any
other proprietary development scheme. According
to several research projects, OSS projects in general
tend to find malicious code faster than closed source
projects, which is indicated for example in the av-
erage life time of so called backdoors, a potential
security threat, which might exist in closed source

software for several month or even years, while hav-
ing an average survival time of days or few weeks, at
the most, in the case of well managed OSS projects
[3], [4], [5], [32]. Figure 8 demonstrates the princi-
ple information and source code flow for a typical
FLOSS development set-up.

FIGURE 8: The classical Stone Soup De-
velopment Methodology often applied in Open
Source Software projects according to [3],
where the User in most cases is also active
as Developer, which need to be adapted to the
rail sector, where Users my be more in a re-
porting rather developing role. Only trusted
developers are privileged to make changes to
the source code in the trusted repository, all
others have read only access.

It is not in question that well acknowledged and
mandatory rules and regulations according to state
of the art R&D processes and procedures (e.g. EN
50128) have to be applied to any software part in
order to get approval from safety authorities be-
fore going into revenue service. While open source
eco-systems in the IT industry are generally driven
by users, having the expertise and therefore being
in a position to contribute to the software source
code themselves, so it seems unlikely for the railway
segment to find many end users of embedded con-
trol equipment for ETCS (here: railway operators
or railway vehicle owners), who will have this level
of expertise. Therefore the classical OSS develop-
ment concept and organization has to be adapted to
the railway sector. Figure 9 shows a proposal for
an open source software development eco-system for
openETCS utilizing a neutral organization to coordi-
nate the so-called ”co-competition” business model
for cooperating several competing equipment inte-
grators and distributors for ETCS onboard products
and services based on a common FLOSS standard
core module, adapted to the needs of the railway
signaling sector providing high assurance products
to be authorized by safety authorities (NSA, NoBo).
The concept as shown in figure 9 assumes a license
with Copy-Left, requiring in general distributing the
source code free of charge, even if code has been
added or modified and further distributed, so that

the community can re-use the improvements as well.
That means that only certain added values can be
sold for a fee. Typical added values can be service for
software maintenance (bug-fixing), software adapta-
tion for specific applications, integration into embed-
ded control hardware and integration into the vehicle
system, test and homologation services, training for
personnel and so forth.

FIGURE 9: Proposal for an openETCS
eco-system using a neutral organization to co-
ordinate a so-called ”co-competition” business
model, showing flow of software source code,
bug reports and ad-on services provided for a
fee.

For further development of the software, espe-
cially for the development of new complex add-on
functions, costly functional improvements, etc., it
might be difficult to find funding, since a Copy-Left
in the FLOSS license requires to publish that soft-
ware free of charge, when distributed.

FIGURE 10: Dual-Licensing concept pro-
viding a cost sharing scheme for financing new
functions (Add-on SW Modules) and improve-
ments for those users who need it, by keeping
cost low for those not requiring enhanced func-
tionality.

Therefore many OSS projects are using a so
called dual licensing policy (or even multi license

policy), by offering the identical software under two
(or more) different license agreements (figure 10).
One might be the European EUPL, a Copy-Left type
FLOSS license and the other one can be a For-Fee-
License (without Copy-Left), which does not require
publishing all modification. In exchange ac certain
fee has to be paid, which may also provide for war-
ranty and other services. Combined with a sched-
uled release scheme (e.g. defining a fixed release
day per year or any other reasonable frequency), all
new modules will be available only under the For-
Fee-License first, until R&D costs have been paid
off by those users, who want to make use of the
new functionality, while all others can stick with the
older, but free of charge software versions. Once the
new features are paid off, those particular software
modules can then be set under the FLOSS license
(EUPL). That allows fair cost sharing for all early
implementers and does not leave an undesired bur-
den on those users, who can live with- out the ad-
ditional functions for a while, but still being able to
upgrade later on.

FIGURE 11: Applying a dual-licensing
model helps even those non-OSS ETCS sup-
pliers participating in cost sharing for add-on
modules even if the usage of the openETCS
software kernel is not possible due to technical
or licensing incompatibilities, but by provid-
ing a Mini-API some or all future new add-on
functions can be integrated.

Since those upgrades will be provided by service
level agreements through OEMs or software service
providers, customers have the choice to either opt for
low cost, but later upgrade service or higher priced
early implementing services, whatever fits best to
their business needs. The dual-licensing scheme has
an additional advantage, allowing even those ETCS
suppliers, who are not able, due to technical limi-
tations or legal restrictions caused by their legacy
system design or other reasons, to put their soft-
ware under an OSS license, never the less being able
to participate in the cost sharing effects for further

add-on functional development. In most cases it is
technically much easier to implement a small API,
interfacing just for the add-on functions, rather than
providing a fully functional API for the whole kernel
(figure 11).

If the non-OSS supplier wants to make use of
those Add-on-SW-Modules from the library, he can-
not use the OSS-licensed software, but can com-
bine any proprietary software with alterative licensed
software, not including a Copy-Left provision. Be-
sides commercial matters also technical constrains
have to be taken into account when combining soft-
ware parts, developed for different architectural de-
signs. A concept of hardware virtualization has al-
ready been discussed to overcome potential security
issues [43].

3.7 How to Phase-in an OSS Ap-
proach into a Proprietary Envi-
ronment?

Even though the original concept of the ETCS goes
far back into the early 1990 years projecting an open
white-box design of interchangeable building blocks,
independent from certain manufacturers, based on a
common specification and mainly driven by the rail-
way operators organized in the UIC (Union Inter-
national des Chemin de Fer = International Union
of Railways), software was not a central issue and
open source software concepts were in its infancy
[41], [42]. Since then a lot of conceptual effort and
detailed product development work has been done,
but the white box approach has never been adapted
by the manufacturing industry. Despites various dif-
ficulties and shortcomings, as mentioned earlier, the
European signal manufacturers have developed sev-
eral products, more or less fit for its purpose and
it would be unwise to ignore this status of develop-
ment and start a brand new development path from
scratch. This would just lead to another product
competing in an even more fragmented market rather
than promoting an effective product standard. In
addition, it needs at least one strong manufacturer
with undoubted reputation and a sound financial ba-
sis in combination with a sufficient customer base to
enforce a standard in a certain market. Therefore
starting a new product line, by having the need to
catch up with more than a decade of R&D efforts is
not an option.

Based on this insight, a viable strategy has to
act in two ways:

• 1. Ground work has to be started to provide

an open source reference system, based on an
unambiguous specification, which means using
formal methods, in order to deliver a reference
onboard system as soon as possible, which can
be used to compare various products on the
market in a simulated as well as real world
infrastructure test environment. This device
needs to be functionally correct, however does
not to be a vital (or fail-safe) implementation.

• 2. At least one or better more manufacturers
have to be convinced to share-in into an open
source software based business approach by
simply converting their existing and approved
proprietary ETCS onboard product into an
open source software product by just switch-
ing to a FLOSS license agreement, prefer-
ably by using the European Union Public Li-
cense (EUPL), including interface definition
and safety case documentation. No technical
changes are required.

• 3. Once a formally specified reference FLOSS
package has been provided, implemented on a
non-vital reference hardware architecture, ac-
cording to step 1, in a future step by step ap-
proach all add-on functions and enhancements
and future major software releases should be
based on formal specifications, allowing a mi-
gration of the original manufacturers software
design solution into the formal method based
approach, due to the openness of the prod-
uct(s) from step 2.

FIGURE 12: Interaction between
openETCS project providing formally speci-
fied non-vital reference OBU for validating
proprietary as well into OSS converted in-
dustrial products and for future migration to
a fully formally specified openETCS software
version to implemented in a market product.

Figure 12 demonstrates this two path approach
with a conventional roll-out scheme, as planned by a

supplier, based on proprietary designs (upper half)
and major mile stones for the openETCS project,
providing a non-vital OBU based on formal spec-
ification and later migrating to a formally specified
vendor specific implementation of the kernel software
(lower half).

Trying to implement an independent formal open
source software package without the backing of at
least one strong manufacturer, will most likely fail
if no approved and certified product can be used to
start with. The only promising way to accomplish
the crucial second step in this concept is by using
a tender for a sufficiently attractive (large enough)
ETCS retrofit project by adding a request for an OSS
license for the software to be delivered. The EU
commission has provided a guideline for such OSS
driven tenders, the so called OSOR Procurement
Guide (Guideline on public procurement of Open
Source Software, issued March 2010, [26]). As an
example, figure 12 shows the time line for an ETCS
retrofit project for high speed passenger trains to be
equipped by 2012 with an pre-baseline 3 proprietary
software in 2012, to be added by an open source li-
cense as soon as the first baseline 3 software package
is expected to be released.

3.8 Economical Aspects of openETCS
for Europes Railway Sector

A free of charge, high-quality ETCS vehicle software
product on the market, makes it less attractive, un-
der economical aspects, to start a new software de-
velopment or even further development of a different
but functionally identical proprietary software prod-
uct. This will lead sooner or later to some kind of
cooperation of competing ETCS equipment suppli-
ers, a co-competition with all those suppliers who
can and will adapt their own products by provid-
ing an API to their particular system. Due to the
fact that very different design and safety philosophies
have been evolved in the past years, some of the man-
ufacturers have to decide either to convert their sys-
tems or share-in into the co-competition grouping,
or otherwise stick with costly proprietary software
maintenance on their own. As figure 4 demonstrates
clearly that the increase of the software volume over
time may exceed the original volume by a factor of
3. It is unlikely to assume that the development of
the ETCS vehicle software will run much differently.
Then it will be very obvious that for a relatively lim-
ited market, of perhaps up to 50,000 rail cars to be
equipped with ETCS in Europe, a larger number
of parallel software product development lines will
hardly be able to survive. A study funded by the

EU Commission [22] has identified a potential av-
erage cost reduction of 36% for the corresponding
R&D by the use of FLOSS. As a result, a signifi-
cantly lower cost of ownership for vehicle operators
would accelerate the ETCS migration on the vehicle
side.

3.9 Benefits for the ETCS Manufac-
turers

The core of the ETCS software functionality de-
fined by UNISIG subset 026, to be implemented
in each EVC, is a published and binding standard
requirement and therefore not suitable for defining
an Unique Selling Proposition (USP). As a result it
makes perfectly sense from the perspective of man-
ufacturers, to share the development cost and the
risk for all R&D of the ETCS core functionality
even with their competitors, often practiced in other
industrial sectors (e.g. automotive). The involve-
ment of several manufacturers in the development of
openETCS will help to enhance the quality in terms
of security and reliability (stability and safety) of
the software, because different design traditions and
experiences can easily complement each other. As
a FLOSS-based business model can no longer rely
on the sales of the software as such, the business
focus has to be shifted to services around the soft-
ware and even other add-on features to the product.
That means the business has to evolve into service
contracts for product maintenance (further develop-
ment, performance enhancements and bug fixes). It
thereby helps the ETCS equipment manufacturers
to generate a dependable long-term cash flow, fund-
ing software maintenance teams even long after the
hardware product has been discontinued and to cover
long term maintenance obligations for the product
even by third parties, helping to reserves scarce soft-
ware development resources for future product R&D.
With respect to the scarcity of well educated software
engineers from Universities, FLOSS has the side ef-
fect, that openETCS can and most likely will become
subject to academic research, generating numerous
master and dissertation thesiss and student research
projects.

3.10 Benefits for Operators and Vehi-
cle Owners

The use of openETCS is a better protection for the
vehicle owners investment, because an obsolescence
problem on the hardware side does not necessarily
mean discontinued software service. Modification

of the ETCS kernel can also be developed by inde-
pendent software producers. This enables competi-
tion on after-sales services and enhancements, be-
cause not only the software sources but also associ-
ated software development tools are accessible to all
parties. As shown above, due to the complexity of
the software, malfunctions of the system may show
up many years, even decades after commissioning.
Conventional procure- ment processes are therefore
not suitable, since they provide only a few years of
warranty coverage for those kinds of defects. These
concepts imply that customers would be able to find
all potential defects within this limited time frame,
just by applying reasonable care and observation of
the product by the user, which does not match ex-
periences with complex software packages with more
than 100,000 lines of code. This finding suggests that
complex software will need care during the whole life-
cycle. Since software matures during long term qual-
ity maintenance, means that during early usage, or
after major changes, the software may need more in-
tensive care whereas in its later period of use, service
intensity may slow down. But as long as the software
is in use, a stand-by team is needed to counter un-
foreseeable malfunctions, triggered by extremely rare
operational conditions. As the ETCS onboard soft-
ware can be considered as mission critical, operators
are well advised to maintain a service level agreement
to get the systems up and running again, even after
worst case scenarios. Railway operators and vehicle
owners are usually not be able to provide that soft-
ware support for themselves. They usually rely on
services provided by the OEM. However due to slow-
ing service intensity after several years of operation,
this service model may not match the OEMs cost
structure in particular after the hardware has been
phased out. In those cases OEMs are likely to in-
crease prices or even to discontinue this kind of serve.
A typical escrow agreement for proprietary software
might help, but has its price too, because alternative
service providers have first to learn how to deal with
the software. Only a well established FLOSS-eco-
system can fill in the gap at reasonable cost for the
end user, and that is only possible with FLOSS. DBs
experience with FLOSS is very positive in general.
For more than a decade, DB is using FLOSS in vari-
ous ways: In office applications, for the intranet and
DBs official internet presence and services on more
than 2000 servers world-wide and even in business
critical applications. The original decision in favor
of FLOSS was mainly driven by expected savings on
license cost. However looking back, quality became a
more important issue over time, since FLOSS appli-
cation have had never caused a service level breach,
which cannot be said for proprietary software, se-

lected by applying the same quality criteria. This
supports the impression that FLOSS does tend to
have a higher quality.

4 Conclusion

The major goal of unified European train control,
signaling, and train protection system, ETCS, has
led to highly complex functionality for the onboard
units, which converts into a level of complexity for
the safety critical software not seen on rail vehicles
before. A lack of standardization on various levels,
different national homologation procedures and a di-
versity of operational rules to be covered, combined
with interfacing to several legacy systems during a
lengthy transitional period has to be considered as
a major cost driver. Therefore, even compared with
some of the more sophisticated legacy ATP and ATC
systems in Europe ETCS has turned out to be far
more expensive without providing much if any ad-
ditional performance or safety advantages. Due to
ambiguities in the system requirement specification
(SRS) various deviations have been revealed in sev-
eral projects, so that even the ultimate goal of full in-
teroperability has not yet been accomplished. There-
fore the development of ETCS has to be considered
as work in progress, resulting in many software
upgrades to be expected in the near and distant fu-
ture. Since almost all products on the market are
based on proprietary software, this means a low de-
gree of standardization for the most complex compo-
nent as well as life-long dependency to the original
equipment manufacturers with high cost of owner-
ship for vehicle holders and operators. Therefore an
open source approach has been suggested, not only
covering the embedded control software of the ETCS
onboard unit itself, but including all tools and doc-
uments in order to make the whole product life cy-
cle as transparent as possible optimizing economy,
reliability, safety and security alike. This concept is
called open proof a new approach for the railway sig-
naling sector. A dual licensing concept is suggested,
based on the European Union Public License with a
copy left provision on the one hand, combined with a
non-copy left for-fee-license on the other hand to pro-
vide a cost sharing effect for participating suppliers
and service providers. By offering a trusted reposi-
tory, a dedicated sources code access policy in com-
bination with a release schedule policy, economical
as well as safety and security considerations can be
taken into account. A two step approach, providing
a formally specified non-vital reference system and a
procurement program, asking for converting existing
commercial products from closed source into open

source, and later merging those two approaches, is
expected to enhance quality and safety parameters in
the long run. A neutral independent and mainly not-
for-profit organization is suggested to manage the
project involving all major stake holders to define
the future product strategy. The whole openETCS
project has to be considered as a business conversion
project from a purely competitive sales oriented mar-
ket into a co-competitive service market, enhancing
cooperation on standards by enabling competition
on implementation and services. It is well under-
stood that such a change cannot be accomplished
even by one of the largest railway operators alone.
Therefore several EU railway organizations, as there
are: ATOC (UK), DB (D), NS (NL), SNCF (F) and
Trenitalia (I) have already signed a Memorandum of
Understanding promoting the openETCS concept in
the framework of an international project.

References

[1] The European Railway Agency (ERA):
ERTMS Technical Documentation, System
requirements Specification - Baseline 3,
SUBSET-026 v300 published 01/01/2010,
http://www.era.europa.eu/Document-
Register/Pages/SUBSET-026v300.aspx

[2] Thompson, Ken: Reflections on Trusting Trust
; Reprinted from Communication of the ACM,
Vol. 27, No. 8, August 1984, pp. 761-763.
http://cm.bell-labs.com/who/ken/trust.html

[3] Wheeler, David A.: High Assurance (for Secu-
rity or Safety) and Free-Libre / Open Source
Software (FLOSS); updated 20/11/2009;
http://www.dwheeler.com/essays/high-
assurance-floss.html

[4] Wysopal, Chris; Eng, Chris: Static De-
tection of Application Backdoors, Vera-
code Inc., Burlington, MA USA, 2007,
http://www.veracode.com/images/stories/static-
detection-of-backdoors-1.0.pdf

[5] Poulsen, Kevin, Borland Interbase back-
door exposed, The Register, Jan. 2001,
http://www.theregister.co.uk/2001/01/12/
borland interbase backdoor exposed

[6] EUROPEAN PARLIAMENT: REPORT on
the existence of a global system for the in-
terception of private and commercial com-
munications (ECHELON interception system),
(2001/2098(INI)), Part 1: Motion for a
resolution: A5-0264/2001, 11. July 2001.

http://www.europarl.europa.eu/comparl/ tem-
pcom/echelon/pdf/rapport echelon en.pdf

[7] FINANCIAL TIMES Europe: Stuxnet worm
causes worldwide alarm, by Joseph Menn
and Mary Watkins, Published: Sept. 24,
2010, Pages 1 and 3 or online version:
http://www.ft.com/cms/s/0/cbf707d2-c737-
11df-aeb1-00144feab49a.html

[8] Schweizerische Eidgenossenschaft, UUS:
Schlussbericht der Unfalluntersuchungsstelle
Bahnen und Schiffe ber die Entgleisung
von Gterzug 43647 der BLS AG vom Di-
enstag, 16. Oktober 2007, in Frutigen.
http://www.uus.admin.ch//pdf/07101601 SB.pdf

[9] Klaeren, Herbert: Skriptum soft-
waretechnik, Universitt Tbingen, Okt.
2007, http://www-pu.informatik.uni-
tuebingen.de/users/klaeren/sweinf.pdf

[10] McConnell, Steve: Code Complete, 2nd ed.
2004, Microsoft Press; Redmond, Washington
98052-6399, USA, ISBN 0-7356-1967-0

[11] Richard H. Cobb, Harlan D. Mills: Engineer-
ing Software under Statistical Quality Control.,
IEEE Software 7(6): 44-54 (1990)

[12] Dvorak, Daniel L., (Editor): NASA Study
on Flight Software Complexity, Final Re-
port, California Institute of Technology,
2008, Report: http://www.nasa.gov/pdf/
418878main FSWC Final Report.pdf, Pre-
sentation: http://pmchallenge.gsfc.nasa.gov/
docs/2009/presentations/Dvorak.Dan.pdf

[13] Ostrand, T. J. et al: Where the Bugs
Are. In: Rothermel, G. (Hrsg.): Proceedings
of the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, Vol.
29, 2004, Pages 86-96; http://portal.acm.org/
; see also: http://www-pu.informatik.uni-
tuebingen.de/users/klaeren/sw.pdf (German)

[14] Randell, B.: The NATO Software
Engineering Conferences, 1968/1969:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

[15] Dijkstra, Edsger W.: The Humble Pro-
grammer, ACM Turing Lecture 1972.
http://userweb.cs.utexas.edu/users/
EWD/ewd03xx/EWD340.PDF

[16] Sukale, Margret: Taschenbuch der Eisenbahnge-
setze, Hestra-Verlag, 13.Auflage 2002

[17] Raymond, Eric Steven: The Cathedral and
the Bazaar, version 3.0, 11 Sept. 2000
http://www.catb.org/ esr/writings/cathedral-
bazaar/cathedral-bazaar/ar01s04.html

[18] Pfleeger, Charles P.; Pfleeger, Shari Lawrence:
Security in Computing. Fourth edition. ISBN 0-
13-239077-9

[19] Biggerstaff, Ted J.: A Perspective of Gen-
erative Reuse, Technical Report, MSR-
TR-97- 26,1997, Microsoft Corporation
http://research.microsoft.com/pubs/69632/tr-
97-26.pdf

[20] Rix, Malcolm: ”Case Study of a Suc-
cessful Firmware Reuse Program,”
WISR (Workshop on the Institution-
alization of Reuse), Palo Alto, CA,.
ftp://gandalf.umcs.maine.edu/pub/WISR/wisr5/
proceedings/ .

[21] Watts S. Humphrey; Winning with Software:
An Executive Strategy, 2001 by Addison- Wes-
ley, 1st Edition; ISBN-10: 0-201-77639-1

[22] UNU-MERIT, (NL): Economic impact of
open source software on innovation and
the competitiveness of the Information and
Communication Technologies (ICT) sector
http://ec.europa.eu/enterprise/sectors/ict/files/
2006-11-20-flossimpact en.pdf

[23] Free Software Foundation, Inc.; 51 Franklin
Street, Boston, MA 02110-1301, USA:
http://www.gnu.org/philosophy/free-sw.html ,

[24] David A. Wheeler: Open Source Soft-
ware (OSS or FLOSS) and the U.S. De-
partment of Defense, November 4, 2009;
http://www.dwheeler.com/essays/dod-oss.ppt

[25] European Commission, European Union Pub-
lic License - EUPL v.1.1, Jan. 9, 2009.
http://ec.europa.eu/idabc/en/document/7774

[26] European Commission, iDABC, European
eGovernment Services; OSOR; Guideline on
public procurement of Open Source Soft-
ware, March 2010, http://www.osor.eu/idabc-
studies/OSS-procurement-guideline

[27] Wikipedia, terminology: Copyleft
http://en.wikipedia.org/wiki/Copyleft

[28] Eclipse Foundation, About the Eclipse Founda-
tion, http://www.eclipse.org/org/#about

[29] TOPCASED: The Open Source Toolkit for Crit-
ical Systems; http://www.topcased.org/

[30] Duhoux, Maarten: Respecting EN 50128
change control requirements using BugZilla
variants, Signal+Draht, Heft 07+08/2010,
EurailPress http://www.eurailpress.de/sd-
archiv/number/07 082010-1.html

[31] DIN EN 50128; VDE 0831-128:2009-10;
Railway applications - Communication,
signal- ling and processing systems -
Software for railway control and protec-
tion systems; version prEN 50128:2009;
Beuth Verlag, Germany, http://www.vde-
verlag.de/previewpdf/71831014.pdf (index
only)

[32] Wheeler, David A.: Countering the
Trusting Trust through Diverse Double-
Compiling (DDC), 2009 PhD dissertation,
George Mason University, Fairfax, Virginia
http://www.dwheeler.com/trusting-trust/

[33] Open Proof: http://www.openproofs.org/

[34] Jan Peleska: Formal Methods and the De-
velopment of Dependable Systems, Habilita-
tionsschrift, Bericht Nr. 9612,Universitt
Bremen, 1996. http://www.informatik.uni-
bremen.de/agbs/jp/papers/habil.ps.gz

[35] Anne E. Haxthausen, Jan Peleska and Sebas-
tian Kinder: A formal approach for the con-
struction and verification of railway control
systems, Journal: Formal Aspects of Comput-
ing. Published online: 17 December 2009.
DOI: 10.1007/s00165-009-0143-6 Springer,
ISSN 0934-5043 (Print) 1433-299X (Online)
http://springerlink.metapress.com/content/
l3707144674h14m5/fulltext.pdf

[36] Lorenz Dubler, Michael Meyer zu Hrste,
Gert Bikker, Eckehard Schnieder; For-
male Spezifikation von Zugleitsystemen
mit STEP, iVA, Techn. Univ. Braun-
schweig, 2002; http://www.iva.ing.tu-
bs.de/institut/projekte/Handout STEP.pdf

[37] Padberg, J. and Jansen, L. and Heckel, R. and
Ehrig, H.: Interoperability in Train Control Sys-
tems: Specification of Scenarios Using Open
Nets; in Proc. IDPT 1998 (Integrated De- sign
and Process Technology), Berlin 1998, pages 17
- 28

[38] Gary Rathwell: Stone Soup Development
Methodology: Last updated December 5, 2000
http://www.pera.net/Stonesoup.html

[39] AUTOSAR (AUTomotive Open System ARchi-
tecture); http://www.autosar.org/

[40] PLCopen; Molenstraat 34, 4201 CX Gorinchem,
NL,: http://www.plcopen.org/

[41] UIC/ERRI A200: ETCS, European Train Con-
trol System, Overall Project Declaration in-
cluding the contribution to be made by UIC,
Utrecht, NL, Jan. 1992,

[42] UIC/ERRI A200: Brochure ETCS, European
Train Control System, The new standard train

control system for the European railways, Aug.
1993, 2nd. Rev. Oct. 1995

[43] Johannes Feuser, Jan Peleska: Security
in Open Model Software with Hardware
Virtualization The Railway Control Sys-
tem Perspective. Univ. Bremen, 2010
http://opencert.iist.unu.edu/Papers/2010-
paper-2-B.pdf

