
DYNAMIC MEMORY ALLOCATION ON REAL-TIME LINUX

Jianping Shen

Institut Dr. Foerster GmbH und Co. KG

In Laisen 70, 72766, Reutlingen, Germany

shen.jianping@foerstergroup.de

Michael Hamal

Institut Dr. Foerster GmbH und Co. KG

In Laisen 70, 72766, Reutlingen, Germany

hamal.michael@foerstergroup.de

Sven Ganzenmüller

Institut Dr. Foerster GmbH und Co. KG

In Laisen 70, 72766, Reutlingen, Germany

ganzenmueller.sven@foerstergroup.de

Abstract

Dynamic memory allocation is used in many real-time systems. In such systems there are a lot of
objects, which are referenced by different threads. Their number and lifetime is unpredictable, therefore
they should be allocated and deallocated dynamically. Heap operations are in conflict with the main
demand of real-time systems, that all operations in high priority threads must be deterministic. In this
paper we provide a generic solution, a combination of the memory pool pattern with a shared pointer,
which meets both: high system reliability by automatic memory deallocation and deterministic execution
time by avoiding heap operations.

1 Introduction

Dynamic memory management on real-time multi-
threaded systems has two handicaps.

1. Execution time for memory allocation and
deallocation should be fast and predictable in
time. Heap allocations in general (with new()

or malloc()) are not deterministic, because of
memory fragmentation and non-deterministic
behaviour of system calls (brk(), sbrk(),
mmap()) [1].

2. For objects which are referenced by more than
one thread, it is difficult or even impossible to
predict which thread will be the last user of
the object and has the duty to deallocate the
object’s memory at the right time.

For such systems we need a deterministic, automatic
and multi-threading capable dynamic memory man-
agement solution for C and C++ real-time develop-
ment.

2 Detailed Problem Descrip-

tion

In this section we will explain the two mentioned
handicaps in detail and try to figure out the solu-
tions.

1

2.1 Execution Time of Memory Allo-

cation

The implementation of memory management de-
pends greatly upon operating system and architec-
ture. Some operating systems supply an allocator for
malloc(), while others supply functions to control
certain regions of data. The same dynamic memory
allocator is often used to implement both malloc()

and operator new() in C++ [2].

Thus, we firstly limit our discussion to the fol-
lowing preconditions:

Operating system: Linux
C Runtime Library: glibc
Architecture: X86-32

Linux uses virtual memory, each process runs in
its own virtual address space. Linux dynamically
maps the virtual memory to physical memory during
runtime. The virtual memory layout for a running
process is shown in figure 1.

FIGURE 1: Process memory layout on

Linux.

The allocator implementation in glibc is
ptmalloc2(). A memory block managed by
ptmalloc2() is called chunk. The heap organises all
available chunks in two containers called Bins and
Fastbins. Fastbins contains small sized1 chunks for
fast allocation, Bins contains normal sized2 chunks.
Available chunks in Bins are organized in 128 size-

ordered double linked lists (shown in figure 2).

FIGURE 2: Available chunks in Bin.

If the deallocator function void free(void* ptr)

is called, a chunk will be released. Which means the
chunk is marked as available and dependent on its
size, goes to Bins or Fastbins for further allocations.
Obviously the available chunks in Bins and Fastbins
are dynamic and dependent on runtime conditions.

If the allocator function void* malloc(size t

size) is called, the following steps will be processed:

1. If memory size ≤ max fast, ptmalloc2() tries
to find a chunk in Fastbins.

2. If step 1 failed or size > max fast and size <=
DEFAULT MMAP THRESHOLD, ptmalloc2() tries
to find a chunk in Bins.

3. If step 2 failed, ptmalloc2() tries to increase
the heap size by calling sbrk().

4. If step 3 failed or
size> DEFAULT MMAP THRESHOLD, ptmalloc2()
calls mmap() to map a physical memory in the
process virtual address space.

5. Finally return the allocated chunk, or NULL if
steps 1 – 4 all failed.

This is a very simplified description. What re-
ally happens is much more complicated, but we don’t
want to inspect the details. It is now important to
know, that execution time of memory allocation is
not predictable.

For a memory allocation of small or normal size
(steps 1 – 3), ptmalloc2() tries to find an appropri-
ate chunk in Bins or Fastbins. The number of avail-
able chunks in both containers is dynamic and de-
pendent on runtime conditions. The allocation time
is therefore not predictable.

For large size memory allocations (step 4),
ptmalloc2() uses the system call mmap() to map

1size <= max fast (default 72 Bytes).
2size > max fast (default 72 Bytes) and size <= DEFAULT MMAP THRESHOLD (default 128 kB).

2

physical memory in the process’ virtual address
space. With virtual memory management the phys-
ical memory may be swapped on hard disk. It in-
volves disk IO, thus, its execution time is also un-
predictable.

On other operating systems and architectures,
the most allocator implementations involve system
calls. Hence the memory allocation on such systems
may be expensive and slow. The allocation time may
or may not be predictable, depending on the concrete
implementation.

A common solution for this problem is the mem-
ory pool approach. A memory pool preallocates a
number of memory blocks during startup. While the
system is running, threads request objects from the
pool and return it back to the pool after usage. In a
single threaded environment the memory pool pat-
tern allows allocations with constant execution time
[3]. In a multi-threading environment the execution
time is predictable, but not constant.

2.2 Memory Deallocation at Right

Time

Consider memory allocations in a multi threading en-
vironment. Thread A allocates a memory block, and
passes it as pointer to Thread B and Thread C. Now
Thread A, Thread B, and Thread C are all users of
this memory block. The last user must deallocate
the memory block to prevent a memory leak. Which
of them becomes the last user is dynamic and de-
pends on runtime conditions. In such a situation, its
impossible to safely deallocate the memory by just
calling the deallocator in one of the three threads.

A solution to this problem is the shared pointer
pattern. The idea behind shared pointers (and other
resource management objects) is called Resource Ac-

quisition Is Initialization (RAII). Once a memory
block is allocated, it will be immediately turned over
to a shared pointer. A reference counter is used by
the shared pointer to keep track of all memory block
users. The shared pointer automatically releases the
memory block when nobody is using this block any
longer [4].

With the help of shared pointers, the users (in
our case the threads) don’t need to release the mem-
ory by themselves, this will be done by the shared
pointer always at the right time.

3 The Approach

3.1 Combination of Memory Pool and

Shared Pointer

The goal is to benefit from both approaches, a com-
bination of the memory pool with shared pointers.

1. The memory pool preallocates a number of ob-
jects (see figure 3).

2. During runtime threads acquire objects from
the pool as shared pointers.

3. If nobody is using the object any longer, the
shared pointer will automatically return the
object back to the pool (see figure 4).

FIGURE 3: Memory pool layout.

FIGURE 4: Shared pointer layout.

3.2 Execution Time of Shared Point-

ers

The common shared pointer implementation raises
an interesting question: where’s the reference
counter located and who allocates it? Unfortunately,
it will be allocated with new() on heap by the shared
pointer itself. That means the constructor call of a
shared pointer is unpredictable in time.

3

Hence we have to modify the shared pointer in
a way that we also preallocate the reference counter
as follows.

1. Extend the memory pool. The memory pool
must preallocate memory not only for the ob-
ject, but also for the object’s reference counter.

2. Modify the standard shared pointer to work
with the memory pool’s preallocated reference
counter.

3.3 The Final Approach

We put 3.1 and 3.2 together, and provide here the
final solution.

1. The memory pool preallocates memory for user
data and its reference counter.

2. At the runtime the process acquires memory
from memory pool as shared pointer.

3. The Shared pointer uses the preallocated ref-
erence counter. Its execution time is therefore
predictable. The Shared pointer keeps also a
pointer to the memory pool. It will be used to
return memory in step 4.

4. When nobody is using the memory block any
longer, the shared pointer automatically re-
turns the memory to memory pool.

This solution works without memory allocation
at runtime. The process and the shared pointer both
use preallocated memory from the memory pool. In
our approach we call the shared pointer RtSharedPtr.

3.4 Execution Time

Our memory pool is designed to be used in multi-
threading environments. The maximum execution
time of a memory acquisition from a memory pool
is dependent on the maximum number of threads.
For multi-threading environments the access to the
memory pool is protected by a mutex. Let’s assume:

tp = execution time for a memory

acquisition at a memory pool

tm = execution time

of mutex lock + unlock

threadmax = maximum thread number

tall = complete latency

for a memory acquisition

Single-threaded environment:

tall = tp + tm

The complete latency is constant in a single-threaded
environment.

Multi-threaded environment:

Best case: no concurrent access to the memory pool

tall,min = tp + tm

Worst case: full concurrent access, all threads access
the memory pool at the same time.

tall,max = (tp + tm) · threadmax

Thus, the complete latency in a multi-threaded en-
vironment can be calculated as:

tp + tm ≤ tall ≤ (tp + tm) · threadmax

It is not constant, but predictable in time.

3.5 Performance Improvement

The mutex protection enforces that all parallel mem-
ory pool accesses will be serialised. This could be a
performance bottleneck. A workaround is to create
more memory pools to improve parallel memory ac-
quisition.

If we create a memory pool for each dynamic
data type in each thread, there is no concurrent
memory pool access, thus, we don’t need the mu-
tex any more. We can disable the mutex protection
by creating a memory pool as thread local. To cre-
ate a thread local memory pool, we call the memory
pool constructor as follows

RtMemoryPool(int size, bool tLocal=true,

const QString& name)

We will reach the maximal performance. The
execution time is minimal and constant.

tall = tp

Obviously in a single-threaded environment we
should create the memory pool as thread local to get
the best performance.

4

4 The Implementation

4.1 Memory Pool

Our implementation3 is based on C++ templates [5],
therefore all preallocated memory chunks of a con-
crete memory pool are of the same size. That means,
we need a memory pool for each dynamic allocated
data type but the template approach garanties type-
safety.

template <typename F>
c l a s s RtSharedPtr ;

template <typename T>
c l a s s RtMemoryPool
{

RtMemoryPool (i n t s i z e , bool
tLocal , const QString& name) ;

RtSharedPtr<T> sharedPtrAl loc () ;
. . .

} ;

The preallocated memory blocks are organized
as a linked list. Each block contains user data, its
reference counter and a pointer to next block. For a
memory acquisition the pool returns always the head
block. (see figure 5)

FIGURE 5: Memory Acquisition

If a memory block returns, it will be added as
the new head block in front of the list. (see figure 6)

FIGURE 6: Return Memory

Instead of a raw pointer the memory pool returns
a shared pointer to the allocated memory block, The
shared pointer uses the reference count in the al-
located memory block, and keeps a pointer to the
memory pool.

//usage
RtMemoryPool<SomeType> memPool

(100 , ”MyPool”) ;
RtSharedPtr<SomeType> sp t r =

memPool . sharedPtrAl loc () ;

If the template type is a class, the memory pool
will call the class constructor4 to initialize the mem-
ory block. Accordingly the class destructor will be
called when the memory block returns back to the
pool. If the object holds some resources5, they are
released by the class destructor to prevent resource
leaks.

4.2 Shared Pointer

We modified the boost shared pointer[6] as follows:

1. Make it possible to use the preallocated refer-
ence counter.

2. Add a boolean to indicate whether the man-
aged memory block is from a memory pool.

3. Add a memory pool pointer, which will be used
to return the memory block back to the pool.

4. Extend the release behavior; make the shared
pointer also be able to return memory byck to
the pool.

3Our implementation is based on the Qt library, so we use QString, which can be easily replaced by std::string.
4Constructors of pool objects should be kept simple, because their execution affects directly the memory aquisition time.
5Objects with dynamically allocated resources violate the real-time conditions because of their destruction in the object’s

destructor.

5

The modified shared pointer can work in two
modes.

Normal mode: it works identically as a standard
shared pointer and allocates the reference counter on
heap. Its execution time is therefore unpredictable.

Real-time mode: in this mode the shared pointer
must work together with a memory pool. Since the
reference counter is preallocated in the pool, the ex-
ecution time is predictable. There is no heap opera-
tion during runtime.

template <typename T>
c l a s s RtSharedPtr
{

template <typename F>
e x p l i c i t RtSharedPtr (F∗ p) :

pn (p) , px (p)
{
}
// a new cons t ruc to r
template <typename F>
e x p l i c i t RtSharedPtr (F∗ p ,

ReferenceCount ∗ count ,
RtMemoryPool<T>∗ pool) :

pn (p , count , pool) , px (p)
{
} . . .

}

We provide a new constructor. Compared to
the boost version it takes two extra parameters.
A pointer to a preallocated reference counter and
a pointer to the related memory pool. With the
new constructor the shared pointer will be bound to
the memory pool and to it’s preallocated reference
counter.

A complete implementation can be found at
http://www.foerstergroup.de/files/TS/RtSharedPtr.tgz

4.3 Test Results

We tested our solution on:

Hardware: Intel Atom N270,
1 GB RAM

Operation System: Linux 3.0.0-rt3
Compiler: gcc/g++ 4.4.5
C-Library: glibc 2.11.2

As test case we started two threads, one high-priority
thread which allocates memory – in test case A from the
memory pool (figure 7) and in test case B from heap (fig-
ure 8). The second thread acts as a noise generator, it
allocates and frees memory chunks of different size on
heap to bother the glibc’s allocator.

The execution time for an allocation in the high-

priority thread is meassured in µs and illustrated in figure
7 and figure 8.

FIGURE 7: Test case A: pool allocation.

FIGURE 8: Test case B: heap allocation.

Both test cases run for approximately 10 hours and
produce about 109 records.

Test case A shows, that 90% pool allocation is ac-
complished up to 5 µs, and 99.999% pool allocation up
to 10 µs. The curve is limited to 60 µs on the time axis,
which is the worst execution time. Our approach satisfies
therefore hard real time systems timing requirements.

Compared to pool allocation, the execution time of
a heap allocation is evenly distributed between 80 µs and
900 µs. Its worst excution time is not limited.

5 Conclusions

The described approach provides a generic solution,
which meets both: high system reliability by automatic
memory deallocation and deterministic execution time by
avoiding heap operations.

We have tested our approach on Linux and Windows.
As a generic solution it can be easily migrated to other
operation systems, which do not provide operation sys-
tem level memory allocation with deterministic execution
time.

6

References

[1] Gianluca Insolvibile: Advanced memory allocation,
2003, Linux Journal Issue 109

[2] http://en.wikipedia.org/wiki/Malloc

[3] http://en.wikipedia.org/wiki/Object pool pattern

[4] Scott Meyers: Effective C++, Third Edition, 2005,
Pearson Education, Inc.

[5] C++ Deeply Embedded, 2010, Hilf GmbH.

[6] http://www.boost.org/

7

