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Abstract

Lately, the greatly improved real-time properties of Linux piqued the interest of the automization

industry. Linux holds a lot of promise as its support by a large active developer community ensures an

array of supported platforms. At the same time, automization vendors can tap into a huge reservoir of

sophisticated software and skilled developers. The open nature of Linux, however, raises questions as to

their resilience against attacks, particularly in installations that are connected to the internet.

While Linux has a good security record in general, security vulnerabilities have been recurring and

will do so for the foreseeable future. As such, it is expedient to supplement Linux’ security mechanisms

with the stronger isolation afforded by virtual machines. However, virtualization introduces an additional

layer in the system software stack which may impair the responsiveness of its guest operating systems.

In this paper, we show that L4Linux — an encapsulated Linux running on a microkernel — can be

improved on such that it exhibits a real-time behavior that falls very close to that of the corresponding

mainline Linux version. In fact, we only measured a small constant increase of the response times, which

should be small enough to be negligible for most applications. Our results show that it is practically

possible to run security critical tasks and control applications in dedicated virtual machines, thus greatly

improving the system’s resilience against attackers.

1 Introduction

Traditionally, embedded systems follow the trend set
by their siblings in the desktop and server arena.
Rapid technological advances allow for ever more
functionality. At the downside, the growing complex-
ity poses a risk as software defects may badly impair
the expected machine behavior. This risk is par-
ticularly threatening for embedded systems as these
systems often have to meet stringent safety require-
ments.

Another trend carrying over from desktop and
servers is the use of open source software, partic-
ularly Linux. The adoption of Linux is remarkable
insofar as it started out as a hobbyist’s system aimed
at desktops. Although neither security nor scalabil-
ity were considered in the beginning, Linux came to
address either of them quite well, making it hugely
popular as server operating system. Linux also got a
significant foothold in the embedded market. Apart
from the absence of licensing costs, its availability

for a host of systems holds a lot of appeal for de-
vice manufacturers. Having ports of Linux for many
platforms is due in no small part to an active commu-
nity, which allows for improvements to circulate as
open source. A third contributing factor for Linux’
popularity is its maturity. For example, as embed-
ded systems embrace network connectivity, they can
draw on a mature network stack and a variety of
complementing user level software. Originally not
being a real-time operating system, the tireless ef-
fort of the community managed to evolve Linux to
the point where it can run applications with real-
time requirements. With that ability, Linux is set to
make inroads into markets that used to be the pre-
serve of dedicated real-time operating systems, most
of them proprietary.

With regard to security, the operating system is
of particular importance. It falls to it to keep ap-
plications running on them in check. Yet, prevalent
operating systems have a rather poor record when
it comes to isolation. The first problem is that they
do poorly when it comes to the principle of least
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authority. Some applications need special privileges
to fulfill their task. Unfortunately, the granularity
with which these privileges can be granted is too
coarse, leaving many applications running with ex-
cessive rights. If such an application succumbs to an
attacker, then he can wield that right for its mali-
cious purposes. The point is corroborated by the ob-
servation that exploiting applications running with
the root identity are in high numbers. However, to-
day’s operating systems cannot be easily phased out
because porting their large number of applications
and device drivers is a laborious endeavor with un-
certain prospects of success.

Confronted with the wanting protection of oper-
ating systems, designers of security-critical systems
have long turned to physical separation, that is, plac-
ing each application on its own machine. While en-
suring excellent separation, this approach is not eas-
ily applicable to use cases where budget, space, and
power limitations have to be met. That is where op-
erating system encapsulation comes into play. While
virtualization is currently the most prominent en-
capsulation technique, it is neither the only one nor
the one best suited for all use cases. In the absence
of hardware virtualization support, other approaches
like OS rehosting might be the better choice.

While virtualization is a well-studied subject, we
are not aware of research covering real-time operat-
ing systems in virtual machines. In this paper, we
set out to investigate whether the real-time behav-
ior of Linux can be preserved if it is executed in a
container. Our results indicate that such a setup
is feasible if moderately longer event response times
can be tolerated.

We will proceed with a brief summary of OS en-
capsulation use cases followed by a description of
L4Linux, the system we build on. The design chap-
ter follows up with a discussion of the problems we
faced when deriving an L4Linux version from a Linux
with the PREEMPT RT patch applied. To evaluate the
real-time performance of L4Linux, we conducted a
number of experiments. The results will be presented
before we discuss related work and conclude.

2 Mitigating OS Shortcomings

In the past, monolithic operating system kernels have
been perceived as an obstacle for the evolvement of
secure, robust, and flexible systems. The underlying
concern was that their growing complexity would in-
evitably introduce software defects. If such a defect
triggers a fault, the consequences are most likely fa-
tal and will crash the system, which is unacceptable

for safety-critical systems.

As an alternative solution, the research commu-
nity put forth designs based on a minimalistic kernel
which is small enough to be thoroughly inspected.
Most of the functionality that used to be part of
monolithic kernels (device drivers, protocol stacks)
would be moved into user level tasks. The rationale
was that such an architecture would allow for easy
customization by replacing or duplicating the rele-
vant user level components.

As device driver development had been known
to be the weak spot for any new system, there was
the need to reuse as many device drivers as possi-
ble. That raised the question of how to provide the
execution environment they were written for. The
original vision was that monolithic kernels would be
decomposed into small components, each executing
in its own protection domain. Since faults would be
contained, many system architect nourished the hope
that the resulting system would be superior in terms
of flexibility, fault tolerance, and security. This en-
deavor, though, proved complicated. Plans to move
to a system completely devoid of legacy operating
system code have not materialized so far and it is
dubious if they will in the foreseeable future.

As set out above, the insufficiencies of prevalent
operating systems pose a risk that may be unaccept-
able for security- and safety-critical applications. At
the same time, they cannot be completely retired
as many applications and device drivers depend on
them. One solution might be to deploy multiple of
them each dedicated to a specific task and ensure
that no unsanctioned interference between them oc-
curs. The most frequently cited arguments are the
following:

Security. Embedded systems are ever more often
connected to the internet whereby the attack
surface is drastically enlarged. Given the
checkered security record of existing operat-
ing system, it seems prudent to place exposed
functionality in dedicated compartments which
provide an additional line of defense.

Consolidation. High end embedded systems often
employ multiple electronic control units. Not
only does such a setup incur high material cost,
each unit has also to be wired and adds to
the overall energy consumption. Consolidat-
ing multiple of them onto one unit can yield
significant cost, weight, and energy savings.

Certification. So far, safety-certified components
could not be deployed alongside noncertified
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ones on the same controller necessitating phys-
ical separation which incurs costs. A certifiable
kernel holds the promise of providing isolation
strong enough so that a coexistence on one con-
troller becomes viable.

Development. The diversity of current software
may be difficult to leverage if the development
is constrained to one operating system. It
would be much better if the respective class-
leading solutions could be used while preserv-
ing the investments in existing software assets.

3 Design
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FIGURE 1: Left: Linux running directly
on a machine. Right: Linux running on top
of Fiasco, an L4 kernel.

Our design is based on L4Linux[?], a port of
the Linux kernel to the L4[5] microkernel. When
it was initially developed it set the standard re-
garding performance for encapsulated operating sys-
tems. Ever since it has evolved alongside with Fi-
asco as the latter improved on its security features
(capability-based access control) and became avail-
able for multiprocessors and multiple architectures
(IA32, AMD64, ARM).

Unlike previous versions of L4Linux, which relied
on L4 threads, the current vCPU-based execution
model[1] is very similar to the environment found
on physical machines. As such, any improvement of
the mainline Linux kernel with respect to interrupt
latencies should in principle also be available in the
corresponding version of L4Linux. The overhead due
to the additional context switches and privilege tran-
sitions will have an impact but should lengthen the
critical paths only by a constant delay.

That said, the previous versions of L4Linux were
designed with an emphasis on throughput perfor-
mance. Design decisions that yield good perfor-
mance results might however prove problematic for
real-time performance. In fact, we came up against
three problems of that kind:

Timer. The current version of Fiasco uses a 1 KHz
clock to drive its scheduler. Accordingly, time-
outs are limited to that granularity as well,
which is insufficient for high-resolution timers.

Communication. L4Linux operates in an environ-
ment where some services are provided by other
tasks. Requesting them involves the platform
communication means, in case of Fiasco pri-
marily synchronous IPC. Waiting for an out-
standing reply may delay the dispatch of an
incoming event.

Memory virtualization. For security reasons,
L4Linux cannot manage its page tables directly
but has to use L4 tasks instead. It turned out
that some applied performance optimizations
have an adverse effect on responsiveness.

We will touch on each of these points in the fol-
lowing sections.

3.1 Communication

In our architecture, L4Linux draws on services pro-
vided by other tasks. Depending on the use case,
communication may either by synchronous or asyn-
chronous. Synchronous IPC has performance advan-
tages for short operations, while asynchronous com-
munication can better hide latencies.

An example where synchronous IPC was chosen
is the graphics server. L4Linux maintains a shadow
framebuffer and notifies the graphics servers when
changes have occured. The graphics server, which
has also access to the shadow framebuffer, then up-
dates the device framebuffer taking into account the
current visibility situation (as multiple L4Linux in-
stances can have windows at various positions).

Considering performance, such an arrangement
is reasonable. However, whenever a screen update is
in progress, the L4Linux main thread cannot pick up
on incoming events as it waits for the reply from the
graphics server. While this situation is hardly notice-
able in performance measurements, latency-sensitive
applications are hurt badly. Our solution involves
a second thread relieving the main thread from en-
gaging directly in IPC. The two threads themselves
interact through a ringbuffer in shared memory and
use asynchronous notification. As a result, the main
thread is never tied up and can always promptly re-
spond to incoming events.
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3.2 Timer

Unlike other peripheral devices, timers are not di-
rectly accessible by user level components. Where
timeouts or delays are required they are typically im-
plemented using IPC timeouts. IPC timeouts as im-
plemented by the Fiasco microkernel have timer tick
granularity—typically with a one millisecond period.

As this granularity is too coarse to use it as
a timer source for a high-resolution timer, we de-
cided to ditch the periodic IPC-timeout based timer.
Instead, L4Linux was granted direct access to the
HPET device, which can be used to trigger timer
events with a high resolution.

3.3 Memory Virtualization

As a user-level task, L4Linux has no direct access to
the page tables, which are under the exclusive control
of the microkernel. To isolate its processes, L4Linux
makes use of L4 tasks. L4 allows two tasks to share
memory and provides the original owner with the
means to later revoke that sharing. L4Linux uses
that memory sharing facility to provision its pro-
cesses with memory. Whenever Linux modifies the
pagetable of one of its processes, this change is re-
flected in a corresponding change in the memory con-
figuration in the process’ task.

While under normal operations page table up-
dates are propagated individually, the destruction of
a process is handled differently. To avoid the over-
head of a microkernel syscall for each single page
table invalidation, the destruction is performed by a
single system call. The destruction of a task address
space requires the microkernel to iterate the page di-
rectory and return page table to its internal memory
pools. Although task destruction can be preempted,
it will not be aborted once started. As such, it is fully
added to worst-case times of timing critical paths in
L4Linux.

We added a thread to L4Linux, which disposes
of tasks of perished processes. Not longer execut-
ing long-latency syscalls, the main L4Linux thread
remains responsive to incoming events.

4 Evaluation

To evaluate our design we conducted a number of
experiments. Our test machine contained a 2.7 Ghz
Athlon 64 X2 5200+ processor, an nVidia-MCP78-

based motherboard and 4 GB RAM. In order to in-
crease the magnitude of the differences between our
test scenarios, we reduced the memory available to
the OS to 128 MB and disabled the second core of
the CPU.

As base OS version we chose the recent Linux
version 3.0.3 and the corresponding release of
L4Linux. We then took Thomas Gleixner’s Linux-
RT patches and applied them to both code bases.
L4Linux was supplemented with the current version
of Fiasco and a minimal L4 runtime environment,
which consisted of a framebuffer and console driver.
Both resulting setups were finally booted directly
from Grub.

We chose the following software components as
our test suite:

• cyclictest is a simple benchmark to measure
the accuracy of OS sleep primitives. The tool is
part of the kernel.org ”rt-tests” benchmark
suite 1. To achieve accurate results, we exe-
cuted it at the highest realtime priority and
chose clock nanosleep() as sleep function,
as it allows an absolute specification of the
wakeup time and thus ignores the time spent
setting up the actual timer event.

• hackbench transmits small messages between
a fixed set of processes and thus exerts stress
on the OS scheduler. Its current development
version is also hosted through git 2.

• Finally, the compilation of a Linux kernel both
causes a considerable amount of harddisk inter-
rupt activity and creates and destroys a large
number of processes. We used a standard 2.6
series Linux source tree and the default i386
configuration as baseline.

4.1 Throughput

To get a feeling for the setup we were about to ex-
periment with, we started out with some throughput
measurements. While these are by no means repre-
sentative due to the restrictions to very little memory
and only one core, they serve as a good starting point
and already hint at some of the expected results.

As every switch between a userspace task and
the L4Linux server involves a round-trip into the mi-
crokernel and a switch to a different address space,
L4Linux suffers from frequent TLB and cache misses.

1RT-Tests Repository: git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git
2Hackbench Repository: https://github.com/kosaki/hackbench
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To highlight the effect of this disadvantage, we cre-
ated an ”intermediate” version of native Linux with-
out support for global pages, large pages and with
explicit TLB flushes on every kernel entry and exit
path.

The hackbench benchmark (cf. Fig. 2) shows
the stripped-down version of Linux almost halfway
between native Linux and L4Linux, which demon-
strates that the impact of repeated cache misses is
quite severe when tasks are rapidly rescheduled. The
compilation of a Linux kernel (cf. Fig. 3) displays as
expected only a mild slowdown for the non-caching
Linux variant.
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FIGURE 2: Runtime of hackbench (40
processes, 100’000 iterations).
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4.2 Memory Management

Another possible source of large latencies are long-
running non-abortable system calls. One particu-
larly long operation especially in the Fiasco-based
setup is the destruction of an address space, as this

requires assistance from the microkernel. To see this
problem in effect, we created two latency histograms
with cyclictest under concurrent operation of the
hackbench benchmark (cf. Fig. 4) and a kernel com-
pilation (cf. Fig. 5), respectively. While the maxima
of both histograms are in the expected order of mag-
nitude, the former shows outliers up to 100µs and the
latter (due to its constant destruction of processes)
even an almost constant distribution of ”long” laten-
cies beyond 40µs.
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FIGURE 4: Latencies measured with
hackbench as load.
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FIGURE 5: Latencies measured with
hackbench as load.

As outlined in section 3.3, we therefore external-
ized the destruction of address spaces to a separate
L4 thread. While the execution context issuing the
destruction request still waits for the destruction to
complete, L4Linux as a whole is then interruptible
during the wait and can react to external events.

4.3 Latency under Load

Taking all these findings into consideration,
we finally compared native Linux and our im-
proved L4Linux implementation directly us-
ing our established benchmark combinations
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cyclictest/hackbench and cyclictest/kernel-
compile. The results are shown in Fig. 6 and Fig. 7.

The first obvious result is that the L4Linux dis-
tribution is offset from the native distribution by
5µs. The explanation for this is pretty simple. As
L4Linux is not allowed to receive interrupts directly,
the microkernel must first handle the interrupt, de-
termine the recipient attached to it and pass the in-
terrupt on. This operation induces a very constant
amount of overhead – we measured a delay of 3.65µs
in our setup for the delivery of an edge-triggered in-
terrupt. Handling level-triggered interrupts requires
even more time, as L4Linux has to issue an extra
syscall to unmask the interrupt line once it is done
with the device in these cases.

As our timer is edge-triggered, there remains a
delay of about 1.3µs. We attribute this to the over-
head induced by the microkernel syscalls involved in
switching to the real-time task (restoring global de-
scriptor table and execution state) as well as to the
aforementioned additional address space switch.

Both distributions reach their maximum not im-
mediately, which means that the ideal interrupt de-
livery path is not the most frequent. This effect is
likely linked to execution paths during which Linux
(just as L4Linux) have disabled interrupt reception.
The delay incurred by this deferred delivery is more
pronounced in the rehosted setup, because deferring
the delivery causes additional round-trips to the mi-
crokernel once L4Linux has enabled interrupt recep-
tion again. Overall though, the difference is not ex-
ceptionally large.

Finally, both setups exhibit outliers well be-
yond the main part of their respective distribu-
tion. With hackbench as load-generating bench-
mark, these show the usual difference between native
and rehosted and are therefore no specific effect of
an implementation detail of Fiasco or L4Linux. The
interrupt-heavy kernel compilation on the other hand
demonstrates that additional interrupts (mostly gen-
erated by the hard drive controller) affect L4Linux
much harder than native Linux due to the interrupt
delivery overhead. This effect is even worsened by
the fact that the cyclictest benchmark has no way
to atomically determine the clock overrun once it is
awoken from its sleep syscall: interrupts hitting be-
tween the sleep and the time lookup are accounted
for with their full duration.

L4Linux even has to deal with another interrupt
source which is not present in the native scenario: Fi-
asco employs the on-board PIT for its own schedul-
ing needs and configures it to generate interrupts in
regular intervals.
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FIGURE 6: Latencies measured with
hackbench as load.
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5 Related Work

Virtualization shares many goals with OS encapsu-
lation, it can be even viewed as an alternative im-
plementation. For a long time, the adoption of vir-
tual machines was hampered by the lack of hardware
support in processors. The construction of VMs that
are efficient, equivalent, and properly controlled re-
quires the instruction set architecture to meet certain
requirements[6]. Unfortunately, many widely used
processors, in particular those of IA32 provenance[7],
do not, and among those which do meet the ba-
sic requirements are again many which lack sup-
port for virtualization of memory management struc-
tures. While this deficiency does not bar virtual-
ization on these processors, performance is indeed
severely hampered, as operations on a guest’s page
tables require extensive help by the hypervisor[2].
The performance degradation usually cancels the
benefits provided by the comfortable hardware vir-
tualization interface, so OS encapsulation remains a
viable solution on these platforms.

6



Virtualization support has also been announced
for ARM processors. It remains to be seen how long
it takes until processors without it are fully sup-
planted.

Xen[3] provides for running multiple operating
systems on one physical machine. As with L4Linux,
guests have to be modified if the underlying ma-
chine does not provide virtualization support. Unlike
Fiasco, Xen does not provide light-weight task and
IPC. Although Xen was ported to the ARM architec-
ture, this port has not found the echo of its siblings
on the desktop or server.

Virtualization and microkernel architecture
do not rule each other out, they are rather
complementary[8, 9]. While thorough research of
worst case execution times of mircokernels them-
selves exists[4], so far, neither of the encapsulation
approaches has been examined as to their applica-
bility for real-time applications.

6 Conclusion

In this paper we investigated the real-time execu-
tion characteristics of an encapsulated operating sys-
tem. Our results indicted that run-time overhead
is incurred in timing-critical paths. However, these
overhead is in the order of the latency experienced
with native Linux. As such, L4Linux is suitable for
use cases where the security of real-time applications
shall be bolstered by deploying them in dedicated OS
capsules.

Future work will concentrate on reducing the
current overheads. We see good chances that the
influence of large overhead contributors such as the
early timer expiration can be mitigated, e.g. by de-
laying the timer and rearming it until after the real-
time task has finished executing.

Our choice of using OS rehosting as encapsula-
tion technology was mainly motivated by its appli-
cability to a host of processors currently deployed in
embedded systems. As hardware virtualization sup-
port finds its way into more and more processors, the
question comes up whether the software stack un-
derneath a virtual machine can be designed in such
a way that it allows for real-time operations in the
virtual machine.
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