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1Czech Technical University in Prague
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Abstract

In this paper, we thoroughly analyze timing properties of CAN-to-CAN gateway built with Linux
kernel CAN subsystem. The latencies induced by this gateway are evaluated under many combinations
of conditions, such as when traffic filtering is used, when the gateway is configured to modify the routed
frames, when various types of load are imposed on the gateway or when the gateway is run on different
kernels (both rt-preempt and vanilla are included). From the detailed results, we derive the general
characteristics of the gateway. Some of the results apply not only for the special case of CAN-to-CAN
routing, but also for the whole Linux networking subsystem because many mechanisms in the Linux
networking stack are shared by all protocols.

The overall conclusion of our analysis is that the gateway is in pretty good shape and our results were
used to support merging the gateway into Linux mainline.

1 Introduction

Controller Area Network (CAN) is still by far the
most widespread networking standard used in the au-
tomotive industry today, even in the most recent ve-
hicle designs. Although there are more modern solu-
tions available on the market [1, 2] (such as FlexRay
or various industrial Ethernet standards), CAN rep-
resents a reliable, cheap, proven and well-known net-
work. Thanks to its non-destructive and strictly de-
terministic medium arbitration, CAN also exhibits
very predictable behavior, making it ideally suited
for real-time distributed systems. Because of these
indisputable qualities, it is unlikely that the CAN is
going to be phased out in foreseeable future.

The maturity of CAN technology means that
there exist a huge number of CAN compatible de-
vices on the market. It is therefore quite easy to
build prototypes of complex systems by just connect-
ing off-the-shelf devices and configuring them to do
what it desired. Sometimes, however, there are de-

vices (or complete subsystems) that are not compat-
ible with each other. They may use different proto-
cols or simply use fixed CAN IDs, that collide with
other devices. Then, it is necessary to separate those
devices using a gateway that ensures that only the
traffic needed for communication with the rest of the
system passes the gateway, perhaps after being mod-
ified to not collide with the rest of the system.

For this reason a widely configurable CAN gate-
way has been implemented inside the Linux kernel,
which is based on the existing Linux CAN subsystem
(PF CAN/SocketCAN [3]) and can be configured via
the commonly used netlink configuration interface.
This gateway is designed for CAN-to-CAN routing
and allows frame1 filtering and manipulation of the
routed frame content. Obviously, such a gateway
must satisfy very strict real-time requirements, espe-
cially if it connects critical control systems. There-
fore, the gateway had to undergo a set of comprehen-
sive tests, focused on measuring latencies intruded by
the gateway under various conditions.

1CAN uses the term “frame” for what other networks call packet or message.
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The results of this testing are reported in this pa-
per. The complete data set, consisting of gigabytes
of data and more than one thousand graphs, as well
as the source codes of our testing tools, are available
for download in our public repositories [4, 5]. This
allows other people interested in this topic to inde-
pendently review our results and methods, as well
as to use them as a base for their own experiments.
Our methods and results are relevant not only for the
special case of CAN-to-CAN routing but, since Linux
networking subsystem forms the core of many other
protocols, also for other networks including Ether-
net, Bluetooth, Zigbee etc.

The paper is organized as follows: the next sec-
tion describes the setup of our testbed and how we
measured the gateway latencies. Section 3 summa-
rizes the main results found during our testing. We
give our conclusion in Section 4.

2 Testbed Setup

The testbed, used for gateway latency measure-
ments, is depicted in Figure 1 and consists of a stan-
dard PC and the gateway. The PC is Pentium 4
running at 2.4GHz with 2GB RAM, equipped with
Kvaser PCI quad-CAN SJA1000-based adapter. The
gateway is an embedded board based on MPC5200B
(PowerPC) microcontroller running at 400MHz.
There are two CAN buses that connects the PC with
the gateway. The PC generates the CAN traffic on
one bus and looks at the traffic routed via the gate-
way on the other bus. The gateway is also connected
to the PC via Ethernet (using a dedicated adapter
in the PC). This connection serves for booting the
gateway via TFTP and NFS protocols, for configur-
ing it via SSH, and also to generate Ethernet load to
see how it influences the gateway latencies.

FIGURE 1: Testbed configuration.

The software configuration is kept as simple as
possible in order to make the results not disturbed by
unrelated activities. The gateway runs only a Linux
kernel, a Dropbear SSH server and, obviously, the
gateway itself. On the PC, a stripped-down Debian
distribution is used. The tasks that generate the test
traffic and measure the gateway latency are assigned
the highest real-time priority and their memory is
locked in order to prevent page-faults. SocketCAN
was used on both the gateway and the PC as the
CAN driver.

2.1 Measurement Methodology

To measure the gateway latency, we generate CAN
traffic in the PC and send it out from can0 inter-
face. As can be seen in Figure 1, this interface is
directly wired to the can1 interface of the PC as
well as to one interface of the gateway. The can1
interface is used to receive the frames to determine
the exact time when each frame actually appears on
the bus2. This is necessary in order to exclude vari-
ous delays such as queuing time in the can0 transmit
queue. When a frame is received on can1 interface,
it is timestamped by the driver in its interrupt han-
dler. These timestamps are sufficiently precise for
our measurements.

The frames routed through the gateway are re-
ceived on can2 interface of the PC. Again, these
frames are timestamped the same way as was de-
scribed in the previous paragraph. The total latency
is then calculated by simply subtracting the times-
tamps measured on the can2 and can1 interfaces (see
Figure 2). It is worth noting that both timestamps
are obtained using the same clock (in our case time-
stamp counter register of the PC’s CPU), which en-
sures that the results are not influenced by the offset
of non-synchronized clocks.

To calculate the latency, we need to determine
which received frame corresponds to which transmit-
ted one, and this mechanism must be able to cope
with possible frame losses or frame modifications in
the gateway. For this purpose, the first two bytes of
the data payload are used to store a unique number
that is never modified by the gateway. This number
serves as an index to a lookup table, which stores the
timestamps relevant to the particular frame. This al-
lows for easily detection of frame losses. When the
corresponding entry in the lookup table contains just
one timestamp after a certain timeout, which is set
to 1 s by default, the frame is considered lost.

2We could also use kernel provided TX timestamps for this, but it somehow didn’t work in our setup.
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FIGURE 2: Calculation of gateway latency.

Since we are interested only in the latency intro-
duced by the gateway (see GW latency in Figure 2),
we subtract from the total latency the duration of
the frame transmission, where we take into account
the stuff bits inserted by CAN link layer.

The sources of our testing tools and the individ-
ual test cases can be found in our git repository [4]
under gw-tests directory.

2.2 What Was Tested?

Our goal was to measure the properties of the gate-
way under a wide range of conditions. These in-
cluded:

1. The gateway configuration such as frame fil-
ters, frame modifications, etc.

2. Additional load imposed on the gateway sys-
tem. The following types of load were con-
sidered: no load; CPU load i.e. running
hackbench3 on the gateway; Ethernet load i.e.
running ping -f -s 60000 -q gw on the PC
with gw being the IP address of the gateway.

3. Type of CAN traffic. We tested the gateway
with three kinds of traffic: One frame at a time,
where the next frame was sent only after receiv-
ing of the previously sent frame from the gate-
way; 50% bus load, where frames were sent with
a fixed period which was equal to two times
the transmission duration and finally, 100% bus
load (flood), where frames were sent as fast as
possible.

4. Linux kernel version used on the gateway.
The following versions were tested: 2.6.33.7,
2.6.33.7-rt29, 2.6.36.2, 3.0.4 and 3.0.4-rt14.

We run all experiments for all possible combinations
of the above conditions which resulted in 653 exper-
iments. The interested reader can find the full set of
the results at [5]. The most important findings are
discussed later in this paper.

2.3 Presentation of Results

In every experiment we measured the latency of mul-
tiple (in most cases 10000) frames. The results are
presented below in a sort of histogram called “la-
tency profile”. Figure 3 shows how the latency pro-
file (at the bottom) relates to the classical histogram
(at top). In essence, latency profile is a backward-
cumulative histogram with logarithmic vertical axis.
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FIGURE 3: How is latency profile constructed.

The advantage of using latency profiles is that
the worst-case behavior (bottom right part of the
graph) is “magnified” by the logarithmic scale. More
formally, the properties of the latency profile are
as follows: Given two points (t1,m1) and (t2,m2)
from a latency profile, where t1 < t2, we can say
that m1 − m2 frames had the latency in the range
(t1, t2). Additionally, the rightmost point (tw,mw)
means that there were exactly mw frames with the
worst-case latency of tw.

2.4 Measurement Precision

We conducted a few experiments to evaluate the
precision of measuring the latencies with our setup.
First, we measured the total frame latencies by two
means: (1) by a PC as described above and (2) by an
independent CAN analyzer by Vector4. In the other
experiments we used only the method 1 (PC) as it al-
lows for full automation of the measurement, whereas

3Hackbench repository is at http://git.kernel.org/?p=linux/kernel/git/tglx/rt-tests.git.
4We used analyzer called CANalyzer (http://www.vector.com/vi canalyzer en.html)
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method 2 (CANalyzer) requires a lot of manual work
to save and process the measured data. The results
of the comparison can be seen in Figure 4. It can be
observed that the time resolution of CAN analyzer
is only 10µs while the PC was able to measure data
with far better resolution, thanks to the support of
high resolution timers in Linux. Our histogram uses
bins of 1µs. The difference between the two meth-
ods is most of the time below 10µs. Occasionally (for
less then 0.01% of frames), we got a bigger difference.
Such precision is sufficient for our experiments.
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FIGURE 4: Comparison of total latency measure-
ment by PC and by CANalyzer, payload: 4 bytes.

Since the PC not only timestamps the received
frames but also generates the Ethernet load to ar-
tificially load the gateway, this additional activity
influences the precision of the measurements. To see
how big this influence is, we ignored the frames re-
ceived on can2 interface and calculated the latency
l from RX timestamp on can1, the time before the
frame was sent (in user space) to can0 and TX dura-
tion (i.e. l = tRX− tsend− tduration). The ideal result
would be a vertical line at time 0, i.e. all frames were
received immediately after being transmitted, but in
reality (see Figure 5) we get a sloped line around
31µs, because the measurement includes the over-
head of sending and receiving operation. The second
line in the graph shows, the generating the Ethernet
traffic decreases the measurement precision by ap-
proximately 30µs, if we ignore a few out-layers, or by
about 200µs if we do not ignore them. Both number
are far below the increase of gateway induced latency
(which is in order of milliseconds – see Section 3.3)
and therefore, the precision is sufficient even when
the PC generates the Ethernet load.
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FIGURE 5: Influence of Ethernet load generator
on measurement precision (no GW involved).

3 The Results

In this section we present the main results of the
analysis. Some of the results gives a nice insight
in how networking in Linux works and how Linux
schedules various activities.

3.1 Simple gateway

In the first experiment we measured the behavior of
the gateway which simply routes all frames from one
bus to another without any modifications.
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FIGURE 6: Simple gateway – latency profile and
the corresponding time chart. Conditions: GW ker-
nel 2.6.33.7, traffic: oneatatime, load: none, pay-
load: 4 bytes.

The latency profile and the corresponding time
chart is shown in Figure 6. It can be seen that
the best-case gateway latency is about 35µs and the
worst-case is about 140µs. Most of the observed la-
tencies fall into two groups, which are split by a gap
around 50µs. We attribute this gap to timer in-
terrupts which were triggered during processing the
frame in the gateway. It can be seen that the cost of
the timer interrupt is about 20µs.

3.2 Batched Processing of Frames

Linux kernel processes the incoming CAN frames (or
packets in Ethernet networks) in batches. Basically,
when RX soft-irq is scheduled, it runs in a loop and
tries to process all frames sitting in receive buffers
(either in hardware or in software). The graph in
Figure 7 shows nicely the effect of this. If we com-
pare the latencies when the CAN traffic was gener-
ated with one frame at a time and flood methods,
it can be seen that in the former case, the overhead
of scheduling the RX soft-irq is always included (the
latency profile starts at 35µs), whereas in the latter
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case, the overhead is reduced. Whenever the gate-
way receives a frame just when it finishes processing
of the previous frame, it does not exit the soft-irq
and continues processing the new frame. Therefore,
the best-case latencies are much lower in that case
(the latency of 0 is of course caused by measurement
inaccuracies). The worst-case is about the same in
both cases.
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FIGURE 7: The effect of batched frame process-
ing. Conditions: GW kernel 2.6.33.7, load: none,
payload: 4 bytes.

3.3 Effect of Loading the Gateway

Figure 8 shows the effect of loading the gateway.
The No load line is the same as in the graphs be-
fore. The CPU load line represents the case when
the CPU of the gateway was heavily loaded by do-
ing many inter-process communications in parallel
(hackbench). This approximately doubles the worst-
case latency from 140µs to 250µs. The Ethernet
load (flood ping), however, influences the gateway
much more significantly. As it was shown in [6],
this is due to the shared RX queue for both CAN
and Ethernet traffic. Therefore, processing of CAN
frames has to wait after the Ethernet packets (in our
case big ICMP echo requests) are processed.
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FIGURE 8: The effect of loading the gateway.
Conditions: GW kernel 2.6.33.7, traffic: one frame
at a time, payload: 4 byte.

3.4 Frame Filtering

The SocketCAN gateway allows for filtering the
frames based on their IDs. There are two kinds of
filter implementations. First implementation (used
for all EFF5 frames) puts the filtering rules into a
linked list. Whenever a frame is received, this list
is traversed and when a match is found, the frame
is routed to the requested interface. The second im-
plementation is optimized for matching single SFF6

IDs. Since there is only 2048 distinct SFF IDs, the
filter uses the frame ID as an index to the table and
the destination interface if found without traversing
a potentially long list.
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FIGURE 9: Gateway with filters. Top: latency
for different number of EFF filter, bottom: single
SFF ID filters. Conditions: GW kernel 2.6.33.7,
traffic: one frame at a time, load: none.

The top graph in Figure 9 show the cost of hav-
ing a different number of EFF filters in the list and
only the last one matches the sent frames. The gate-
way latency obviously increases with the number of
filters. From a more detailed graph [5] it was nicely
visible when the list started to be bigger than CPU
cache and the latency started to increase quicker. In
our case this boundary was hit for about 80 filters.

Additionally, when the filter list is too long and
CAN frames arrives faster, the gateway is no longer
able to handle all of them and starts dropping them.
This is visible in the appropriate graph at [5].

The bottom graph in Figure 9 shows that the
single ID SFF filters perform the same for all frame
IDs even when there is 2048 distinct filtering rules.

5Extended Frame Format
6Standard Frame Format
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3.5 Frame Modifications

Besides routing the frames, the gateway is also able
to modify them. There are different operations which
can be applied to the frames: AND, OR, XOR, SET
and two checksum generators. The graph in Fig-
ure 10 shows the cost of modifying the frames. In
essence, most of the cost comes from copying the
socket buffer before modifying it. The difference be-
tween different modifications is negligible.
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FIGURE 10: The Cost of Frame Modification.
Conditions: GW kernel 2.6.33.7, traffic: one frame
at a time, load: none, payload: 8 bytes.

3.6 Differences between Kernels

Figure 11 shows the differences between different ker-
nel versions. We tried to keep the configs7 of the ker-
nels as similar as possible by using make oldconfig.
From the graph, we can observe two things. First,
with increasing non-rt versions, the latency increases
as well. The difference between 2.6.33 and 2.6.36 is
about 10µs, the difference between 2.6.36 and 3.0 is
smaller – about 2µs.
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FIGURE 11: Different kernels. Conditions: traf-
fic: one frame at a time, load: none, payload: 4
bytes.

Second, the latency of rt-preempt kernels is
higher than any of non-rt kernels. This is obvious,
because the preemptivity of the kernel has its costs.

Interestingly, 3.0-rt is much better in this regard
than 2.6.33-rt. Compared to non-rt kernels, 3.0-rt
increases latencies by about 20µs, whereas 2.6.33-rt
increases them by almost 100µs.
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FIGURE 12: Huge latencies in rt-preempt kernel.
Conditions: 2048 EFF filters, GW kernel: 3.0.4-
rt14, traffic: one frame at a time, load: none, pay-
load: 2 bytes.

There seems to be a bug in rt-preempt kernels.
For certain workloads, we get the latencies as big as
50ms. This can be seen in Figure 12. Interestingly,
we get such a high latency regularly, exactly every
one second. This behavior appears in both -rt ker-
nels tested and we will try to find the source of the
latency later. Additionally, kernel 3.0.4-rt14 hangs
with heavy Ethernet load, which is also something
we want to look at in the future.

3.7 User-Space Gateway

The SocketCAN gateway is implemented in kernel
space. It is interesting to see the differences when
the gateway is implemented as a user space program.
The user space gateway was executed with real-time
scheduling policy (SCHED FIFO) with priority 90.
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FIGURE 13: Kernel-space vs. User-space gate-
way. Conditions: kernel: 2.6.33.7, load: none, traf-
fic: one frame at a time, payload: 2 bytes.

In Figure 13 can be seen that the time needed
to route the frame in user-space is about three times
bigger then with the kernel gateway.

7The configs of our gateway kernels can be found at https://rtime.felk.cvut.cz/gitweb/can-benchmark.git/tree/HEAD:/-
kernel/build/shark
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FIGURE 14: Kernel-space vs. User-space gate-
way under heavy traffic. Conditions: kernel:
2.6.33.7 (non-rt and rt), load: none, traffic: flood,
payload: 2 bytes.

Figure 14 shows the gateway latencies with flood
CAN traffic. One can see that the user-space gate-
way under non-rt kernel drops some frames (the gap
at the top) and exhibits latencies up to 100ms. The
latencies are caused mainly by queuing frames in re-
ceiving socket queues. Since the user space had no
chance to run for a long time, the queue becomes
long and eventually some frames are dropped. The
kernel simply has “higher priority” than anything in
the user space. With -rt kernel, the situation is dif-
ferent. The priorities of both user and kernel threads
can be set to (almost) arbitrary values, which allows
to reduce latencies of the user-space gateway down
to 2ms.

3.8 Multihop Routing

In the last experiment, we modified the kernel gate-
way to allow routing a single frame multiple times
via virtual CAN devices. This allows us to split the
overall latency into two parts. The first part is the
overhead of interrupt handling and soft-irq schedul-
ing and the second part is the processing of the frame
in CAN subsystem. The latter part can be derived
from Figure 15, by looking at the difference between
consecutive lines (and dividing it by two). We get
that CAN subsystem processing takes about 10µs.
The rest (from ca. 60µs to 130µs) is the overhead
of the rest of the system.
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FIGURE 15: Latencies of multi-hop routing via
virtual CAN interfaces.

It is interesting to compare these graphs for dif-
ferent kernel versions. From that, one can see where
the increase of overhead comes from. The interested
reader is referred to our web site [5].

4 Conclusion

This paper presented the timing analysis of a Linux-
based CAN-to-CAN gateway and studied influence of
various factors (like CPU and bus load, kernel ver-
sions etc.) on frame latencies. The results indicate
that the gateway itself introduces no significant over-
head under real-life bus loads and working conditions
and can reliably work as a part of a distributed em-
bedded system. Our results were used to support
merging the gateway into Linux mainline. The gate-
way should appear in Linux 3.2 release.

On the other hand, it must be noted that espe-
cially excessive Ethernet traffic or improperly con-
structed frame filters can lead to significant perfor-
mance penalties and possible frame losses. The CAN
subsystem, which forms the core of the examinated
CAN gateway, is inherently prone to problems un-
der heavy bus loads, not only on CAN bus, but also
on other networking devices, as was already demon-
strated in our previous work [6]. Nevertheless, the
described gateway is a standard and easy-to-use solu-
tion, integrated in Linux kernel mainline, and there-
fore represents the framework of choice for most de-
velopers.

It was also clearly demonstrated that the kernel-
space solution works much better than the user-space
solution, and that it can be beneficial to use stan-
dard non-rt kernels (providing that the gateway runs
in kernel-space). This allows to avoid greater over-
head and resulting performance penalty of rt kernels,
providing that the standard kernel is properly con-
figured.

Finally, our benchmarks revealed a few problems
in -rt kernels. We will investigate these problems as
our future work.
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