
Tiny Linux Kernel Project: Section Garbage Collection Patchset

Wu Zhangjin

Tiny Lab - Embedded Geeks
http://tinylab.org

wuzhangjin@gmail.com

Sheng Yong

Distributed & Embedded System Lab, SISE, Lanzhou University, China
Tianshui South Road 222, Lanzhou, P.R.China

shengy07@lzu.edu.cn

Abstract

Linux is widely used in embedded systems which always have storage limitation and hence requires
size optimization. In order to reduce the kernel size, based on the previous work of the “Section Garbage
Collection Patchset”, This paper focuses on details its principle, presents some new ideas, documents the
porting steps, reports the testing results on the top 4 popular architectures: ARM, MIPS, PowerPC, X86
and at last proposes future works which may enhance or derive from this patchset.

1 Introduction

The size of Linux kernel source code increases
rapidly, while the memory and storage are limited
in embedded systems (e.g. in-vehicle driving safety
systems, data acquisition equipments etc.). This re-
quires small or even tiny kernel to lighten or even
eliminate the limitation and eventually expand the
potential applications.

Tiny Lab estimated the conventional tailoring
methods and found that the old Tiny-linux project is
far from being finished and requires more work and
hence submitted a project proposal to CELF: “Work
on Tiny Linux Kernel” to improve the previous work
and explore more ideas.

“Section garbage collection patchset(gc-
sections)” is a subproject of Tiny-linux, the initial
work is from Denys Vlasenko[9]. The existing patch-
set did make the basic support of section garbage
collection work on X86 platforms, but is still out-
side of the mainline for the limitation of the old
GNU toolchains and for there are some works to be
done(e.g. compatibility of the other kernel features).

Our gc-sections subproject focuses on analyzes
its working mechanism, improves the patchset(e.g.
unique user defined sections), applies the ideas for
more architectures, tests them and explores potential
enhancement and derivation. The following sections
will present them respectively.

2 Link time dead code remov-

ing using section garbage col-

lection

Compiler puts all executable code produced by com-
piling C codes into section called .text, r/o data into
section called .rodata, r/w data into .data, and unini-
tialized data into .bss[2, 3]. Linker does not know
which parts of sections are referenced and which ones
are not referenced. As a result, unused(or ‘dead’)
function or data cannot be removed. In order to
solve this issue, each function or data should has its
own section.

gcc provides -ffunction-sections or
-fdata-sections option to put each function or data

1

to its own section, for instance, there is a function
called unused func(), it goes to .text.unused func
section, Then, ld provides the --gc-sections op-
tion to check the references and determine which
dead function or data should be removed, and the
--print-gc-sections option of ld can print the the
function or data being removed, which is helpful to
debugging.

The following two figures demonstrates the dif-
ferences between the typical object and the one with
-ffunction-sections:

FIGURE 1: Typical Object

FIGURE 2: Object with -ffunction-
sections

To learn more about the principle of section
garbage collection, the basic compiling, assebmling
and linking procedure should be explained at first
(Since the handling of data is similar to function,
will mainly present function below).

2.1 Compile: Translate source code

from C to assembly

If no -ffunction-sections for gcc, all functions are
put into .text section (indicated by the .text instruc-
tion of assembly):

$ echo ’unused (){} main(){}’ | gcc -S -x c -o - - \
| grep .text

.text

Or else, each function has its own section (indi-
cated by the .section instruction of assembly):

$ echo ’unused (){} main(){}’ \

| gcc -ffunction -sections -S -x c -o - - | grep .text
.section .text.unused ,"ax",@progbits

.section .text.main ,"ax",@progbits

As we can see, the prefix is the same .text, the
suffix is function name, this is the default section
naming rule of gcc.

Expect -ffunction-sections, the section at-
tribute instruction of gcc can also indicate where
should a section of the funcion or data be put in,
and if it is used together with -ffunction-sections,
it has higher priority, for example:

$ echo ’__attribute__ ((__section__(".text.test"))) unused (){} \

main(){}’ | gcc -ffunction -sections -S -x c -o - - | grep .text
.section .text.test ,"ax",@progbits
.section .text.main ,"ax",@progbits

.text.test is indicated instead of the default
.text.unused. In order to avoid function redefinition,
the function name in a source code file should be
unique, and if only with -ffunction-sections, every
function has its own unique section, but if the same
section attribute applies on different functions, dif-
ferent functions may share the same section:

$ echo ’__attribute__ ((__section__(".text.test"))) unused (){} \
__attribute__ ((__section__(".text.test"))) main(){}’ \

| gcc -ffunction -sections -S -x c -o - - | grep .text
.section .text.test ,"ax",@progbits

Only one section is reserved, this breaks the core
rule of section garbage collection: before linking,
each function or data should has its own section, but
sometimes, for example, if want to call some func-
tions at the same time, section attribute instruction
is required to put these functions to the same section
and call them one by one, but how to meet these
two requirements? use the section attribute instruc-
tion to put the functions to the section named with
the same prefix but unique suffix, and at the linking
stage, merge the section which has the same prefix
to the same section, so, to linker, the sections are
unique and hence better for dead code elimination,
but still be able to link the functions to the same
section. The implementation will be explained in
the coming sections.

Based on the same rule, the usage of section at-
tribute instruction should also follow the other two
rules:

1. The section for function should named with
.text prefix, then, the linker may be able to
merge all of the .text sections. or else, will not

2

be able to or not conveniently merge the sec-
tions and at last instead may increase the size
of executable for the accumulation of the sec-
tion alignment.

2. The section name for function should be pre-
fixed with .text. instead of the default .text
prefix used gcc and break the core rule.

And we must notice that: ‘You will not be able
to use “gprof” on all systems if you specify this op-
tion and you may have problems with debugging if
you specify both this option and -g.’ (gcc man page)

$ echo ’unused (){} main(){}’ | \
gcc -ffunction -sections -p -x c -o test -

<stdin >:1:0: warning : -ffunction -sections disabled ; \

it makes profiling impossible

2.2 Assemble: Translate assembly

files to binary objects

In assembly file, it is still be possible to put the func-
tion or data to an indicated section with the .sec-
tion instruction (.text equals .section “.text”). Since
-ffunction-sections and -fdata-sections doesn’t
work for assembly files and they has no way to de-
termine the function or data items, therefore, for the
assembly files written from scratch (not translated
from C language), .section instruction is required to
added before the function or data item manually, or
else the function or data will be put into the same
.text or .data section and the section name indicated
should also be unique to follow the core rule of sec-
tion garbage collection.

The following commands change the section
name of the ‘unused’ function in the assembly file
and show that it does work.

$ echo ’unused (){} main(){}’ \

| gcc -ffunction -sections -S -x c -o - - \
| sed -e "s/unused /test/g" \

| gcc -c -xassembler - -o test
$ objdump -d test | grep .section
Disassembly of section .text.test:

Disassembly of section .text.main:

2.3 Link: Link binary objects to tar-

get executable

At the linking stage, based on a linker script, the
linker should be able to determine which sections
should be merged and included to the last executa-
bles. When linking, the -T option of ld can be used
to indicate the path of the linker script, if no such
option used, a default linker script is called and can
be printed with ld --verbose.

Here is a basic linker script:

OUTPUT_FORMAT("elf32 -i386", "elf32 -i386",

"elf32 -i386")
OUTPUT_ARCH(i386)
ENTRY(_start)

SECTIONS
{

.text :
{

(.text .stub .text. .gnu.linkonce .t.*)

...
}

.data :
{

(.data .data. .gnu.linkonce .d.*)
...

}

/DISCARD / : { *(.note.GNU-stack) *(.gnu.lto_*) }
}

The first two commands tell the target architec-
ture and the ABI, the ENTRY command indicates
the entry of the executable and the SECTIONS com-
mand deals with sections.

The entry (above is start, the standard C entry,
defined in crt1.o) is the root of the whole executable,
all of the other symbols (function or data) referenced
(directly or indirectly) by the the entry must be kept
in the executable to make ensure the executable run
without failure. Besides, the undefined symbols (de-
fined in shared libraries) may also need to be kept
with the EXTERN command. and note, the --entry

and --undefined options of ld functions as the same
to the ENTRY and EXTERN commands of linker
script respectively.

--gc-sections will follow the above rule to deter-
mine which sections should be reserved and then pass
them to the SECTIONS command to do left merg-
ing and including. The above linker script merges all
section prefixed by .text, .stub and .gnu.linkonce.t
to the last .text section, the .data section merging is
similar. The left sections will not be merged and kept
as their own sections, some of them can be removed
by the /DISCARD/ instruction.

Let’s see how --gc-section work, firstly, without
it:

$ echo ’unused (){} main(){}’ | gcc -x c -o test -
$ size test

text data bss dec hex filename
800 252 8 1060 424 test

Second, With --gc-sections (passed to ld with
-Wl option of gcc):

$ echo ’unused (){} main(){}’ | gcc -ffunction -sections \

-Wl,--gc -sections -x c -o test -
$ size test

text data bss dec hex filename

794 244 8 1046 416 test

It shows, the size of the .text section is reduced
and --print-gc-sections proves the dead ‘unused’
function is really removed:

3

$ echo ’unused(){} main(){}’ | gcc -ffunction-sections \

-Wl,--gc-sections,--print-gc-sections -x c -o test -

/usr/bin/ld: Removing unused section ’.rodata’ in file ’.../crt1.o’

/usr/bin/ld: Removing unused section ’.data’ in file ’.../crt1.o’

/usr/bin/ld: Removing unused section ’.data’ in file ’.../crtbegin.o’

/usr/bin/ld: Removing unused section ’.text.unused’ in file ’/tmp/cclR3Mgp.o’

The above output also proves why the size of the
.data section is also reduced.

But if a section is not referenced (directly or in-
directly) by the entry, for instance, if want to put
a file into the executable for late accessing, the file
can be compressed and put into a .image section like
this:

...

SECTIONS
{

...

.data :
{

__image_start = .;
*(.image)
__image_end = .;

...
}

}

The file can be accessed through the point-
ers: image start and image end, but the .image
section itself is not referenced by anybody, then,
--gc-sections has no way to know the fact that .im-
age section is used and hence removes .image and as
a result, the executable runs without expected, In
order to solve this issue, another KEEP instruction
of the linker script can give a help.

...

SECTIONS
{

...

.data :
{

__image_start = .;
KEEP(*(.image))
image_end = .;

...
}

}

3 Section garbage collection

patchset for Linux

The previous section garbage collection patchset is
for the -rc version of 2.6.35, which did add the core
support of section garbage collection for Linux but
it still has some limitations.

Now, Let’s analyze the basic support of section
garbage collection patchset for Linux and then list
the existing limitations.

3.1 Basic support of gc-sections

patchset for Linux

The basic support of gc-sections patchset for Linux
includes:

• Avoid naming duplication between the
magic sections defined by section attribute
instruction and -ffunction-sections or
-fdata-sections

The kernel has already defined some sections
with the section attribute instruction of gcc,
the naming method is prefixing the sections
with .text., as we have discussed in the above
section, the name of the sections may be the
same as the ones used by -ffunction-sections

or -fdata-sections and hence break the core
rule of section garbage collections.

Therefore, several patches has been up-
streamed to rename the magic sections
from {.text.X, .data.X, .bss.X, .rodata.X}
to {.text..X, .data..X, .bss..X, .rodata..X}
and from {.text.X.Y, .data.X.Y, .bss.X.Y,
.rodata.X.Y} to {.text..X..Y, .data..X..Y,
.bss..X..Y, .rodata..X..Y}, accordingly, the re-
lated headers files, c files, assembly files, linker
scripts which reference the sections should be
changed to use the new section names.

As a result, the duplication between
the section attribute instruction and
-ffunction-sections/-fdata-sections is elim-
inated.

• Allow linker scripts to merge the sec-
tions generated by -ffunction-sections or
-fdata-sections and prevent them from merg-
ing the magic sections

In order to link the function or data sec-
tions generated by -ffunction-sections or
-fdata-sections to the last {.text, .data, .bss,
.rodata}, the related linker scripts should be
changed to merge the corresponding {.text.*,
.data.*, .bss.*, .rodata.*} and to prevent the
linker from merging the magic sections(e.g.
.data..page aligned), more restrictive patterns
like the following is preferred:
(.text.[A-Za-z0 -9_$^])

A better pattern may be the following:
(.text.[^.])

Note, both of the above patterns are only sup-
ported by the latest ld, please use the versions
newer than 2.21.0.20110327 or else, they don’t
work and will on the contrary to generate big-
ger kernel image for ever such section will be

4

linked to its own section in the last executable
and the size will be increased heavily for the
required alignment of every section.

• Support objects with more than 64k sections

The variant type of section number(the
e shnum member of elf{32,64} hdr) is u16,
the max number is 65535, the old modpost
tool (used to postprocess module symbol)
can only handle an object which only has
small than 64k sections and hence may fail
to handle the kernel image compiled with
huge kernel builds (allyesconfig, for exam-
ple) with -ffunction-sections. Therefore, the
modpost tool is fixed to support objects with
more than 64k sections by the document
“IA-64 gABI Proposal 74: Section Indexes”:
http://www.codesourcery.com/public/cxx-
abi/abi/prop-74-sindex.html.

• Invocation of -ffunction-sections/-fdata-sections
and --gc-sections

In order to have a working kernel with
-ffunction-sections and -fdata-sections:

$ make KCFLAGS ="-ffunction -sections -fdata -sections "

Then, in order to also garbage-collect the sec-
tions, added

LDFLAGS_vmlinux += --gc-sections

in the top-level Makefile.

The above support did make a working kernel
with section garbage collection on X86 platforms, but
still has the following limitations:

1. Lack of test, and is not fully compatible with
some main kernel features, such as Ftrace, Kg-
cov

2. The current usage of section attribute instruc-
tion itself still breaks the core rule of section
garbage collections for lots of functions or data
may be put into the same sections(e.g. init),
which need to be fixed

3. Didn’t take care of assembly carefully and
therefore, the dead sections in assembly may
also be reserved in the last kernel image

4. Didn’t focus on the support of compressed ker-
nel images, the dead sections in them may also
be reserved in the last compressed kernel image

5. The invocation of the gc-sections requires to
pass the gcc options to ‘make’ through the en-
vironment variables, which is not convenient

6. Didn’t pay enough attention to the the kernel
modules, the kernel modules may also include
dead symbols which should be removed

7. Only for X86 platform, not enough for the
other popular embedded platforms, such as
ARM, MIPS and PowerPC

In order to break through the above limita-
tions, improvement has been added in our gc-sections
project, see below section.

3.2 Improvement of the previous gc-

sections patchset

Our gc-sections project is also based on mainline
2.6.35(exactly 2.6.35.13), it brings us with the fol-
lowing improvement:

1. Ensure the other kernel features work with gc-
sections

Ftrace requires the mcount loc section to
store the mcount calling sites; Kgcov requires
the .ctors section to do gcov initialization,
these two sections are not referenced directly
and will be removed by --gc-sections and
hence should be kept by the KEEP instruc-
tion explicitly. Besides, more sections listed
in include/asm-generic/vmlinux.lds.h or the
other arch specific header files has the similar
situation and should be kept explicitly too.

/* include /asm-generic /vmlinux .lds.h */
...

- *(__mcount_loc) \
+ KEEP(*(__mcount_loc)) \

...
- *(.ctors) \
+ KEEP(*(.ctors)) \

...

2. The section name defined by section attribute
instruction should be unique

The symbol name should be globally unique
(or else gcc will report symbol redefinition), in
order to keep every section name unique, it is
possible to code the section name with the sym-
bol name. FUNCTION (or func in Linux)
is available to get function name, but there is
no way to get the variable name, which means
there is no general method to get the symbol
name so instead, another method should be
used, that is coding the section name with line
number and a file global counter. the combina-
tion of these two will minimize the duplication
of the section name (but may also exist dupli-
cation) and also reduces total size cost of the
section names.

5

gcc provides LINE and COUNTER to get
the line number and counter respectively, so,
the previous section() macro can be changed
from:

#define __section(S) \
__attribute__ ((__section__(#S)))

to the following one:

#define __concat (a, b) a##b

#define __unique_impl(a, b) __concat (a, b)
#define __ui(a, b) __unique_impl(a, b)

#define __unique_counter(a) \
__ui(a, __COUNTER__)

#define __uc(a) __unique_counter(a)

#define __unique_line(a) __ui(a, __LINE__)
#define __ul(a) __unique_line(a)

#define __unique (a) __uc(__ui(__ul(a),l_c))
#define __unique_string(a) \

__stringify(__unique (a))
#define __us(a) __unique_string(a)

#define __section(S) \
__attribute__ ((__section__(__us(S.))))

Let’s use the init for an example to see the
effect, before, the section name is .init.text,
all of the functions marked with init will be
put into that section. With the above change,
every function will be put into a unique sec-
tion like .text.init.13l c16 and make the linker
be able to determine which one should be re-
moved.

Similarly, the other macros used the section
attribute instruction should be revisited, e.g.
sched.

In order to make the linker link the functions
marked with init to the last .init.text section,
the linker scripts must be changed to merge
.init.text.* to .init.text. The same change need
to be applied to the other sections.

3. Ensure every section name indicated in assem-
bly is unique

-ffunction-sections and -fdata-sections only
works for C files, for assembly files, the .section
instruction is used explicitly, by default, the
kernel uses the instruction like this: .section

.text, which will break the core rule of section
garbage collection tool, therefore, every assem-
bly file should be revisited.

For the macros, like LEAF and NESTED used by
MIPS, the section name can be uniqued with
symbol name:

#define LEAF(symbol) \
- .section .text; \

+ .section .text.asm.symbol ;\

But the other directly used .section instruc-
tions require a better solution, fortunately, we
can use the same method proposed above, that
is:

#define __asm_section(S) \
.section __us(S.)

Then, every .section instruction used in the as-
sembly files should be changed as following:

/* include /linux/init.h */

-#define __HEAD .section ".head.text","ax"
+#define __HEAD __asm_section(.head.text), "ax"

4. Simplify the invocation of the gc-sections

In order to avoid passing -ffunction-sectoins,
-fdata-sections to ‘make’ in every compiling,
both of these two options should be added
to the top-level Makefile or the arch spe-
cific Makefile directly, and we also need to
disable -ffunction-sectoins explicitly when
Ftrace is enabled for Ftrace requires the
-p option, which is not compatible with
-ffunction-sectoins.

Adding them to the Makefile directly may also
be better to fix the other potential compatia-
bilities, for example, -fdata-sections doesn’t
work on 32bit kernel, which can be fixed as fol-
lowing:

arch/mips/Makefile
ifndef CONFIG_FUNCTION_TRACER

cflags -y := -ffunction -sections
endif

FIXME: 32bit doesn ’t work with -fdata -sections
ifdef CONFIG_64BIT

cflags -y += -fdata -sections

endif

Note, some architectures may prefer
KBUILD CFLAGS than cflags-y, it depends.

Besides, the --print-gc-sections option
should be added for debugging, which can
help to show the effect of gc-sections or when
the kernel doesn’t boot with gc-sections, it can
help to find out which sections are wrongly
removed and hence keep them explicitly.

Makefile
ifeq ($(KBUILD_VERBOSE),1)

LDFLAGS_vmlinux += --print -gc-sections
endif

Then, make V=1 can invocate the linker to print
which symbols are removed from the last the
executables.

In the future, in order to make the whole
gc-sections configurable, 4 new kernel config
options may be required to reflect the selec-
tion of -ffunction-sections, -fdata-sections,
--gc-sections and --print-gc-sections.

5. Support compressed kernel image

The compressed kernel image often include a
compressed vmlinux and an extra bootstraper,
the bootstraper decompress the compressed

6

kernel image and boot it. the bootstraper may
also include dead code, but for its Makefile does
not inherit the make rules from either the top
level Makefile or the Makefile of a specific ar-
chitecture, therefore, this should be taken care
of independently.

Just like we mentioned in section 2.3,
the section stored the kernel image must
be kept with the KEEP instruction, and
the -ffunction-sectoins, -fdata-sections,
--gc-sections and --print-gc-sections op-
tions should also be added for the compiling
and linking of the bootstraper.

6. Take care of the kernel modules

Currently, all of the kernel modules share
a common linker script: scripts/module-
common.lds, which is not friendly to
--gc-sections for some architectures may re-
quires to discard some specific sections. there-
fore, a arch specific module linker script should
be added to arch/ARCH/ and the following
lines should be added to the top-level Make-
file:

Makefile
+ LDS_MODULE = \

-T $(srctree)/arch/$(SRCARCH)/module.lds

+ LDFLAGS_MODULE = \
$(if $(wildcard arch/$(SRCARCH)/module.lds),\

$(LDS_MODULE))
LDFLAGS_MODULE += \

-T $(srctree)/scripts /module -common.lds

Then, every architecture can add the archi-
tecture specific parts to its own module linker
script, for example:

arch/mips/module.lds
SECTIONS {

/DISCARD / : {
*(.MIPS.options)

...
}

}

In order to remove the dead code in the kernel
modules, it may require to enhance the com-
mon module linker script to keep the functions
called by module init() and module exit(), for
these two are the init and exit entries of the
modules. Besides, the other specific sections
(e.g. .modinfo, version) may need to be kept
explicitly. This idea is not implemented in our
gc-sections project yet.

7. Port to the other architectures based platforms

Our gc-sections have added the gc-sections sup-
port for the top 4 architectures (ARM, MIPS,
PowerPC and X86) based platforms and all of
them have been tested.

The architecture and platform specific parts
are small but need to follow some basic steps
to minimize the time cost, the porting steps
to a new platform will be covered in the next
section.

3.3 The steps of porting gc-sections

patchset to a new platform

In order to make gc-sections work on a new platform,
the following steps should be followed (use ARM as
an example).

1. Prepare the development and testing environ-
ment, including real machine(e.g. dev board)
or emulator(e.g. qemu), cross-compiler, file
system etc.

For ARM, we choose qemu 0.14.50 as the emu-
lator and versatilepb as the test platform, the
corss-compiler (gcc 4.5.2, ld 2.21.0.20110327)
is provided by ubuntu 11.04 and the filesys-
tem is installed by debootstrap, the ramfs
is available from http://d-i.debian.org/daily-
images/armel/.

2. Check whether the GNU toolchains sup-
port -ffunction-sections, -fdata-sections

and --gc-sections, if no support, add the
toolchains support at first

The following command shows the GNU
toolchains of ARM does support gc-sections,
or else, there will be failure.

$ echo ’unused (){} main(){}’ | arm-linux -gnueabi -gcc \

-ffunction -sections -Wl,--gc-sections \
-S -x c -o - - | grep .section

.section .text.unused,"ax",%progbits

.section .text.main ,"ax",%progbits

3. Add -ffunction-sections, -fdata-sections, at
proper place in arch or platform specific Make-
file

arch/arm/Makefile
ifndef CONFIG_FUNCTION_TRACER
KBUILD_CFLAGS += -ffunction -sections

endif
KBUILD_CFLAGS += -fdata -sections

4. Fix the potential compatibility problem (e.g.
disable -ffunction-sections while requires
Ftrace)

The Ftrace compatiability problem is fixed
above, no other compatibility has been found
up to now.

5. Check if there are sections which are unrefer-
enced but used, keep them

The following three sections are kept for ARM:

7

arch/arm/kernel/vmlinux .lds.S
...

KEEP (*(.proc.info.init*))
...
KEEP (*(.arch.info.init*))

...
KEEP (*(.taglist .init*))

6. Do basic build and boot test, if boot failure
happens, use make V=1 to find out the wrongly
removed sections and keep them explicitly with
the KEEP instruction

$ qemu -system -arm -M versatilepb -m 128M \
-kernel vmlinux -initrd initrd.gz \

-append "root=/dev/ram init=/bin/sh" \

If the required sections can not be determined
in the above step, it will be found at this step
for make V=1 will tell you which sections may
be related to the boot failure.

7. Add support for assembly files with the
asm section() macro

Using grep command to find out every .section
place and replace it with the asm section()
macro, for example:

arch/arm/mm/proc -arm926.S
- .section ".rodata"

+ __asm_section(.rodata)

8. Follow the above steps to add support for com-
pressed kernel

Enable gc-sections in the Makefile of com-
pressed kernel:

arch/arm/boot/compressed/Makefile
EXTRA_CFLAGS+=-ffunction -sections -fdata -sections

...
LDFLAGS_vmlinux := --gc-sections
ifeq ($(KBUILD_VERBOSE),1)

LDFLAGS_vmlinux += --print -gc -sections
endif

...

And then, keep the required sections in the
linker script of the compressed kernel:

arch/arm/boot/compressed/vmlinux .lds.in
KEEP(*(. start))

KEEP(*(.text))
KEEP(*(.text.call_kernel))

9. Make sure the main kernel features (e.g.
Ftrace, Kgcov, Perf and Oprofile) work nor-
mally with gc-sections

Validated Ftrace, Kgcov, Perf and Oprofile on
ARM platform and found they worked well.

10. Add architecture or platform specific mod-
ule.lds to remove unwanted sections for the ker-
nel modules

In order to eliminate the unneeded sections(e.g.
.fixup, ex table) for modules while no CON-
FIG MMU, a new module.lds.S is added for
ARM:

arch/arm/module.lds.S
...

SECTIONS {
/DISCARD / : {

#ifndef CONFIG_MMU

*(.fixup)
*(__ex_table)

#endif
}

}
arch/arm/Makefile
extra -y := module.lds

11. Do full test: test build, boot with NFS root
filesystem, the modules and so forth.

Enable the network bridge support between
qemu and your host machine, open the NFS
server on your host, config smc91c111 kernel
driver, dhcp and NFS root client, then, boot
your kernel with NFS root filesystem to do a
full test.

$ qemu -system-arm -kernel /path/to/zImage \

-append "init=/bin/bash root=/dev/nfs \
 nfsroot =$nfs_server:/path/to/rootfs ip=dhcp" \

-M versatilepb -m 128M -net \
nic ,model=smc91c111 -net tap

4 Testing results

Test has been run on all of the top 4 architectures,
including basic boot with ramfs, full boot with NFS
root filesystem and the main kernel features (e.g.
Ftrace, Kgcov, Perf and Oprofile).

The host machine is thinkpad SL400 with In-
tel(R) Core(TM)2 Duo CPU T5670, the host sytem
is ubuntu 11.04.

The qemu version and the cross compiler for
ARM is the same as above section, the cross com-
piler for MIPS is compiled from buildroot, the cross
compiler for PowerPC is downloaded from emde-
bian.org/debian/, the details are below:

arch board net gcc ld
ARM versatilepb smc91c111 4.5.2 2.21.0.20110327

MIPS malta pcnet 4.5.2 2.21
PPC g3beige pcnet 4.4.5 2.20.1.20100303

X86 pc-0.14 ne2k pci 4.5.2 2.21.0.20110327

TABLE 1: Testing environment

Note:

• In order to boot qemu-system-ppc on ubuntu
11.04, the openbios-ppc must be downloaded
from debian repository and installed, then use
the -bios option of qemu-system-ppc to indi-
cate the path of the openbios.

8

• Due to the regular experssion pattern bug
of ld <2.20 described in section 3, In or-
der to make the gc-sections features work
with 2.20.1.20100303, the linker script of pow-
erpc is changed through using the pattern
.text.*, .data.*, .bss.*, .sbss.*, but to avoid
wrongly merging the kernel magic sections (e.g.
.data..page aligned) to the .data section, the
magic sections are moved before the merging
of .data, then it works well because of the the
.data..page aligned will be linked at first, then,
it will not match .data.* and then will not go
to the .data section. Due to the unconvenience
of this method, the real solution will be forcing
the users to use ld >= 2.21, or else, will dis-
able this gc-sections feature to avoid generating
bigger kernel image.

SECTIONS
{

...

.data.. page_aligned : ... {

PAGE_ALIGNED_DATA(PAGE_SIZE)
}

...

.data : AT(ADDR(.data) - LOAD_OFFSET) {
DATA_DATA

(.data.)
...

(.sdata .)
...

}

...
}

The following table shows the size information of
the vanilla kernel image(vmlinux, .orig) and the ker-
nel with gc-sections(.gc), both of them are stripped
through strip -x (or even strip s) because of gc-
sections may introduce more symbols (especially,
non-global symbols) which are not required for run-
ning on the embedded platforms.

The kernel config is gc sections defconfig placed
under arch/ARCH/configs/, it is based on the ver-
satile defconfig, malta defconfig, pmac32 defconfig
and i386 defconfig respectively, extra config options
only include the DHCP, net driver, NFS client and
NFS root file system.

arch text data bss total save
ARM 3062975 137504 198940 3650762

3034990 137120 198688 3608866 -1.14%
MIPS 3952132 220664 134400 4610028

3899224 217560 123224 4545436 -1.40%
PPC 5945289 310362 153188 6671729

5849879 309326 152920 6560912 -1.66%
X86 2320279 317220 1086632 3668580

2206804 311292 498916 3572700 -2.61%

TABLE 2: Testing results

5 Conclusions

The testing result shows that gc-sections does elim-
inate some dead code and reduces the size of the
kernel image by about 1˜3%, which is useful to some
size critical embedded applications.

Besides, this brings Linux kernel with link time
dead code elimination, more dead code can be further
eliminated in some specific applications (e.g. only
parts of the kernel system calls are required by the
target system, finding out the system calls really not
used may guide the kernel to eliminate those system
calls and their callees), and for safety critical sys-
tems, dead code elimination may help to reduce the
code validations and reduce the possibinity of execu-
tion on unexpected code. And also, it may be possi-
ble to scan the kernel modules(‘make export report’
does help this) and determine which exported kernel
symbols are really required, keep them and recom-
pile the kernel may help to only export the required
symbols.

Next step is working on the above ideas and
firstly will work on application guide system call op-
timization, which is based on this project and maybe
eliminate more dead code.

And at the same time, do more test, clean up
the existing patchset, rebase it to the latest stable
kernel, then, upstream them.

Everything in this work is open and free, the
homepage is tinylab.org/index.php/projects/tinylinux,
the project repository is gitorious.org/tinylab/tinylinux.

References

[1] Tiny Lab, http://www.tinylab.org

[2] Link time dead code and data
elimination using GNU toolchain,
http://elinux.org/images/2/2d/ELC2010-gc-
sections Denys Vlasenko.pdf, Denys Vlasenko

[3] Executable and Linkable Format,
http://www.skyfree.org/linux/references/
ELF Format.pdf

[4] GNU Linker ld,
http://sourceware.org/binutils/docs-2.19/ld/

[5] A Whirlwind Tutorial on Creating Re-
ally Teensy ELF Executables for Linux,
http://www.muppetlabs.com/b̃readbox/software/
tiny/teensy.html

9

[6] Understanding ELF using readelf and obj-
dump, http://www.linuxforums.org/articles/
understanding-elf-using-readelf-and-
objdump 125.html

[7] ELF: From The Programmers
Perspective, http://www.ru.j-
npcs.org/usoft/WWW/www debian.org/
Documentation/elf/elf.html

[8] UNIX/LINUX ,

https://www.ibm.com/developerworks/cn/linux/l-
excutff/

[9] Section garbage collection patchset,
https://patchwork.kernel.org/project/linux-
parisc/list/?submitter=Denys+Vlasenko, Denys

Vlasenko

[10] Work on Tiny Linux Kernel,
http://elinux.org/Work on Tiny Linux Kernel,
Wu Zhangjin

10

