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Abstract

The ARMv5 CPUs are inexpensive, low power, 32 bit processors widely used in embedded systems.

Because of these processors’ cache implementation, using memory protection on these systems incurs a

performance penalty too large for many real time applications. By implementing the Fast Context Switch

Extension, we achieved improved cache performance while retaining memory protection under the Linux

2.6 kernel. We briefly discuss the problem, explain the necessary changes to the Linux memory manage-

ment system, and present performance measurements taken from artificial and real world applications.

1 Introduction

The ARMv5 architecture specifies virtually indexed,
virtually tagged (VIVT) cache units. This means
that the central processing unit (CPU) accesses the
memory cache by means of virtual addresses. When
the CPU issues a load or store instruction, the de-
sired virtual address is presented to the memory
management unit. If this address is present in the
cache, then the unit immediately returns the cached
data to the CPU. In a memory protected, multi-
tasking operating system like Linux, each process
has its own virtual address space. Consequently, the
cache must be invalidated during a context switch in
order to ensure that each process can only access its
own data.

As a result of the cache invalidation, each time
a process is scheduled, it must reload all its work-
ing data from the main memory. Reading data from
main memory is an expensive operation. Depending
on the particular CPU type, the memory speed, and
the program’s data access pattern, the cost of the
cache invalidation during a context switch can be
on the order of 200 microseconds. This performance
penalty is great enough to preclude using such CPU
types for certain time critical applications, for ex-
ample when the reaction time to external events is
required to be less than one millisecond.

One approach to address this problem, used for
example in vxWorks or µClinux, is to use one ”flat”

address space, shared by the operating system ker-
nel and all user processes. This avoids the context
switch penalty while sacrificing memory protection.
The obvious drawback under this scenario is that any
one misbehaving program can corrupt the kernel or
other programs.

Another solution is to use the Fast Context
Switch Extension (FCSE) available on ARMv5 pro-
cessors. The FCSE may be understood as a
workaround to the VIVT cache, where a single vir-
tual address space is divided up among several pro-
cesses. This is done in such a way that no two pro-
cesses share the same range of virtual addresses, thus
obviating the need to invalidate the cache during a
context switch.

The work described in this paper implements
the FCSE under Linux kernel 2.6, removing some of
the performance problems associated with the VIVT
cache. Our goal was to create a minimally intrusive
solution that would be viable for acceptance into the
main line kernel.

2 Previous Work

Earlier work has highlighted the context switch per-
formance problem running Linux on ARMv5 com-
puters. Hyok-Sung Choi and Hee-Chul Yun [1] re-
port dramatically improved performance when mov-
ing from plain Linux to µClinux. David, Carlyle,



and Campbell [2] instrumented a Linux 2.6 kernel to
investigate the direct and indirect latency caused by
context switches while running four different algo-
rithms. They found that 99 context switches during
a three to four second test add between 0.17% and
0.25% to the running time.

Our work was not the first attempt to implement
the ARM FCSE for Linux. As part of his student
work at the University of New South Wales, Adam
Wiggins implemented the FCSE for Linux kernel 2.4.
The changes in Wiggins’ Linux patch [3] are consid-
erably more extensive than just adding the FCSE. To
avoid changing the page directories during a context
switch, Wiggins employed the ARMv5 domain mech-
anism to create a single, global Translation Lookaside
Buffer (TLB) in software. This approach can avoid
invalidating the TLB during a context switch, in ad-
dition to avoiding cache invalidation. However, the
performance gain comes at the cost of some complex-
ity in the ARM Linux kernel code. Wiggins termed
the combination of using ARM domains and FCSE
as Fast Address Space Switching (FASS), and he had
previously [4] implemented FASS for the L4 micro-
kernel.

Van Schaik and Heiser [5] describe a para-
virtualized Linux 2.6 kernel called “Wombat” run-
ning under the L4 microkernel. They report Wombat
having greatly reduced context switching times com-
pared with native ARM Linux, under the restriction
of a 32 MB virtual memory space for user programs.

Sebastian Smolorz [6] attempted a port of Wig-
gins’ FASS work to Linux kernel 2.6. Smolorz’s work
helps to highlight the ARMv5 context switch per-
formance problems, and it presents one possible ap-
proach toward a solution. Although we did copy one
useful header file from this source, in our view this
port suffers from two major drawbacks. First, the
FASS changes are far too intrusive to ever be ac-
cepted into the main line kernel, since they make
fairly complex use of ARM domains, introducing a
completely new concept into the ARM Linux mem-
ory system. Second, the port is not fully working
and is no longer being developed.

3 The ARM FCSE

A simplified schematic of the ARMv5 Memory Man-
agement Unit (MMU) is depicted in Figure 1. The
CPU issues a virtual address (marked VA in the fig-
ure) to the instruction cache (I-cache), data cache
(D-cache), and the TLB. The TLB is a cache of vir-
tual to physical address mappings. If the translation
is not cached, then a hardware page table walker ob-
tains the physical address (marked PA in the figure).

The cache unit returns the desired data to the CPU
if the requested address is in the cache.

FIGURE 1: Memory Management Unit

Not shown in the figure is the fact that the cache
units consult permission bits stored within the TLB.
Since Linux uses the same address space layout for
every user program, this arrangement of the MMU
requires invalidating the caches and the TLB during
every context switch.

FIGURE 2: FCSE PID Relocation

The FCSE provides a ”Process ID” register
(PID) for sharing a single 32 bit virtual address
space. This register contains a 7 bit process identifier
that can be combined with a 25 bit virtual address,
as shown in Figure 2. When the PID is set to a non-
zero value and the 7 high order bits of a virtual ad-
dress are cleared, a modified virtual address (shown
as MVA) is generated by adding the PID value to the
virtual address according to the following formula:

MV A = V A + (PID << 25)

Using this method allows 128 distinct 32 MB ad-
dress spaces, so that up to 128 processes may safely
coexist without having to flush the caches at each
context switch. However, we note that it is still nec-
essary to invalidate the TLB during a context switch
in order to enforce memory protection. The resulting
limitation of 128 processes and 32 MB address space
is acceptable for some embedded systems.

4 Implementation

The Linux memory management subsystem1 is not
neatly abstracted into a few, water tight source files.

1Mel Gorman’s book [7] offers a good, if somewhat dated, introduction to the Linux memory management system.



On the contrary, the memory management code is
spread among many files, some of which are archi-
tecture independent, and some architecture specific.
Moreover, the actual logic can be quite tricky and
contains a fair amount of “black magic.”

We endeavored to implement the FCSE in a
minimally intrusive way, without requiring major
changes in the existing memory management code.
The current patch [8] changes 23 files and affects
about 300 lines in the kernel. In addition, the patch
adds two new, FCSE-specific files with about 260
lines total. Our implementation affects only the
ARM specific architecture sources. No changes in the
main Linux memory management subsystem were
necessary.

4.1 Guaranteed Mode

The virtual memory layout for ARM Linux is fixed
in such a way that all virtual addresses above
TASK SIZE (3 GB) are always interpreted as kernel
addresses. Adapting the FCSE to this model thus
required reducing the number of useable PIDs to 95.
When the FCSE is active, it effectively partitions a
single virtual memory space into one kernel and 95
user regions, as shown in Table 1.

Virtual Address Use
...
0xC000.0000 KERNEL
0xBE00.0000 reserved
0xBC00.0000 PID 94
...
0x0400.0000 PID 2
0x0200.0000 PID 1
0x0000.0000 PID 0

TABLE 1: The FCSE memory layout

Although the original intent of the ARMv5 PID
register appears to have been to allow the operating
system to keep the current process ID in this reg-
ister, our implementation decouples the ARM PID
from the Linux process ID. Linux gives each thread
its own process ID, but all the threads within one
process share the same virtual memory space. There-
fore, we associate one ARM PID with the mm struct

of each process.
With FCSE enabled, the CPU automatically

converts a virtual address in the range from zero to
0x2000000 into a modified virtual address within one
of the 95 possible slots. This creates situations where
the kernel expects an unmodified VA, but the hard-
ware MMU expects a MVA. The patch provides a

pair of functions2 to convert between a VA and a
MVA. A good deal of the effort in implementing the
FCSE was simply to identify the spots where such a
conversion is required.

The only place where a MVA to VA conversion
occurs is in the fault handler. In this case, the CPU
has issued an instruction that has triggered a fault.
The hardware gives the MVA as the source of the
fault, but the kernel requires the original VA in or-
der to properly handle the fault.

In contrast, the VA to MVA conversion occurs
several times, and for two different reasons. When
flushing the cache and the TLB, the kernel has a VA
in its Virtual Memory Area (VMA) data structures,
but the cache and TLB contain the MVA that the
CPU generated. Thus the cache and TLB flushing
code must present the MVA to the hardware. These
cases account for almost all of the VA to MVA con-
versions.

The one other important VA to MVA conversion
occurs in the pgd offset() macro. This macro is
used by kernel code that needs to access the page ta-
bles. By modifying the VA, this macro now ensures
that page tables will be created or adjusted using a
correctly relocated MVA.

Besides accounting for the VA to MVA con-
versions, the FCSE code must also enforce the 32
MB limit on the virtual address space and repro-
gram the PID register during a context switch.
Limiting the address space is accomplished in the
arch get unmapped area function, where any map-
ping that would cause a task’s space to exceed 32 MB
is denied. Reprogramming the PID register amounts
to a one line addition to the switch mm function.
In order to actually benefit from the FCSE, we also
must disable the cache invalidation code normally ex-
ecuted during a context switch. The current patch
implements this for Xscale, ARM920, and ARM926,
by adding appropriate #ifdefs to the machine spe-
cific assembler files under arch/arm/mm.

4.2 Best Effort Mode

After presenting initial versions of the FCSE patch to
the ARM Linux kernel mailing list, one repeated crit-
icism was that allowing only 95 processes, each with a
32 MB virtual address space, is an unacceptable lim-
itation. There was a desire for a way to enable the
FCSE but, at the same time, to fall back to the stan-
dard, unlimited memory management scheme dy-
namically. To fulfill this requirement, the current
version of the patch offers a compilation option to
enable either a “guaranteed” mode, or a “best ef-
fort” mode. The guaranteed mode operates as de-

2The functions are defined in such a way that, if the FCSE option is not selected at compile time, they do nothing at all.



scribed above, with the mentioned limitations, and
never flushes the caches during a context switch.

When the best effort mode is enabled, there are
no artificial limits to the number of processes or the
virtual address space. If the run time condition of
the user space programs permits, then the system
will benefit from the performance advantage that the
FCSE offers. Under the best effort mode, the cache
flush during a context switch is only performed when
necessary to ensure the integrity of the virtual mem-
ory system.

For the best effort mode, we overcome the 95 pro-
cesses limitation by reusing the FCSE PIDs. Each
Linux process is assigned to one of 95 groups, and
each group shares one PID. A context switch between
processes belonging to two different groups does not
necessarily trigger a cache flush. Instead, each group
has a “dirty” bit which is set whenever a process in
that group is scheduled. Also, each group remem-
bers which of its processes was last scheduled. A
cache flush is needed when the new process’s group
is “dirty” and a different process was last scheduled
in that group.

In order to overcome the 32 MB virtual mem-
ory limitation, the best effort mode reserves the zero
PID for those processes which require a larger space.
Once a process requests more that 32 MB, it is re-
located from its initial PID to PID zero by coping
its page tables. Flushing the cache is required every
time such a process is scheduled or preempted.

5 Performance Evaluation

In order to measure the effectiveness of the FCSE,
we benchmarked a recent Linux kernel both with
and without the FCSE. This section presents results
of performance measurements on artificial and real
world applications. These measurements were per-
formed on an Intel IXP425 clocked at 400 MHz, with
128 MB main memory. The IXP425 has separate
data and instruction caches, each 32 KB in size.

5.1 Artificial Applications

5.1.1 cyclictest

Thomas Gleixner’s cyclictest program [9] was de-
veloped to measure the scheduling latency of the
Linux kernel. The program repeatedly attempts to
sleep (yield the CPU) for a certain time interval, and
measures the actual duration of the sleep to infer the
latency. We ran cyclictest first under plain Linux,
and then under FCSE Linux in both guaranteed and
best effort mode, with the following command line
arguments.

cyclictest -D 60 -p 50 -q -h 1000

In order to create a load on the system, we ran
the following program in the background before run-
ning the cyclictest program.

while [ 1 ]; do

find / ;

cat /dev/mem > /dev/null ;

done

Table 2 shows the measured scheduling latencies
for each of the three test cases. On average, the
guaranteed FCSE mode had 100 µs less latency that
Linux without the FCSE, while the best effort mode
showed about 50 µs better average performance than
plain Linux. The worst measured latency exceeded
550 µs for all three test cases, but the FCSE test
cases outperformed plain Linux here as well.

Kernel Min Ave Max
Plain Linux 97 194 682
Guaranteed FCSE 26 94 611
Best Effort FCSE 37 143 569

TABLE 2: Scheduling Latency (µs)

Figures 3 and 4 show the histograms of the
cyclictest latency measurements. In Figure 3 the
results from the guaranteed FCSE mode, on the left
hand side, are presented along with plain Linux, on
the right hand side.
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FIGURE 3: FCSE versus Plain Linux

Figure 4 shows the results from the best effort
FCSE mode. Here one can recognize that the best
effort mode appears as a combination of plain Linux
and FCSE Linux, as it were. It is interesting to no-
tice an additional latency region at about 250 µs. Al-
though the average performance is clearly improved
over plain Linux, the best effort mode appears to
have increased latencies in some code paths.
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FIGURE 4: Best Effort FCSE

5.1.2 lmbench

Larry McVoy’s lmbench [10] comprises a suite of
programs that measure various system performance
benchmarks. In our view, lmbench is not as useful as
other tools for measuring latency since it reports only
an average value, rather than a set of statistics or a
histogram. However, since both Choi [1] and Van
Schaik [5] report results obtained using lmbench, we
also include measurements made with that program.

Since neither of those two papers mention us-
ing any kind of system load, we assume that their
lmbench measurements were conducted with an
otherwise idle system. Thus, in contrast to the
cyclictest measurements, we ran the tests without
any system load, with the command line as follows.

for s in 0 1 4 16; do

lat_ctx -s $s 2 4 6 8 10 12 14 16;

done

We compared lmbench performance for plain
Linux and FCSE Linux in both guaranteed and best
effort mode. For each variety of Linux, we ran the
lat ctx test four times, using a different work buffer
size each time, and varying the number of processes
participating in the test. Following Choi, [1] we used
work buffer sizes of 0, 1, 4, and 16 KB. A larger work
buffer causes greater pressure on the data cache. For
each buffer size, the test connects a number of pro-
cesses in a ring of Unix pipes. Each process reads
a token from its pipe and then writes the token to
the next process. In the graphs, the x-axis shows the
number of processes, the y-axis shows the measured
latency. The result for each work buffer size appears
as one line.
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FIGURE 5: Plain Linux - lmbench

Figure 5 shows the results of the lmbench mea-
surement for plain Linux. For this test case, the
scheduling latency stayed well above 100 µs in every
case. The fact that the number of processes made
little difference in the latency comes as no surprise,
since, by flushing the cache during a context switch,
plain Linux always provokes the worst case perfor-
mance.
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FIGURE 6: FCSE Linux - lmbench

Figure 6 shows the results for FCSE Linux in
guaranteed mode, and Figure 7 shows the best ef-
fort mode. For these test cases, the scheduling la-
tency never exceeded 150 µs. Here we notice that
increasing the number of processes did indeed affect
the latency. It is also interesting that the two FCSE
modes yielded almost identical performance for this
test. We expect that running the test under a loaded
system, as we did for the cyclictest, would better
highlight the difference between the two modes.
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FIGURE 7: Best Effort FCSE - lmbench

5.2 Real World Applications

Our original motivation for implementing the FCSE
was to improve the performance of ARMv5 machines
on real world applications. One recent trend in vari-
ous industries is to run time critical applications over
standard Ethernet. For example, Ethernet networks
are being used as field bus replacements (like Ether-
CAT), for distributed real time computing, and for
audio/video streaming. We present performance re-
sults for two real world applications that send or re-
ceive time critical messages in the form of Ethernet
packets.

We used the Beckhoff ET200 Industrial Ether-
net Multichannel Probe in order to obtain impar-
tial results, external to the device under test. The
ET2000 is able to time stamp Ethernet packets with
a resolution of 10 nanoseconds. Since we measure
the interval with an Ethernet tap outside of the de-
vice under test, the measured time includes all of the
delays from both the hardware and software of the
system under test.

5.2.1 Packet Message Reply

In this application, the program expects incoming
Ethernet packets containing control commands. Af-
ter receiving a command packet, the application up-
dates its internal state and sends a status reply
packet. It is important that the program sends the
reply as soon as possible. We measured the interval
from the time the command packet appears on the
wire to the time the reply packet appears.

Kernel Min Ave Max Std Dev
Plain Linux 313 364 771 29.46
Guaranteed FCSE 211 283 840 30.50
Best Effort FCSE 210 284 718 31.59

TABLE 3: Packet Reply Latency (µs)

We tested this application under plain Linux
and FCSE Linux in both guaranteed and best effort
mode. During these tests we created a system load
using the method described in Section 5.1.1. For this
test, the best effort FCSE mode performed nearly as
well as the guaranteed mode, as shown in Table 3.
Both of the FCSE modes outperformed plain Linux
by 80 µs on average. Figure 8 presents a histogram
of the reply times using guaranteed FCSE mode, on
the left hand side, along with the times using plain
Linux, on the right hand side.
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FIGURE 8: FCSE vs Plain Linux

5.2.2 Periodic Packet Transmission

This application periodically transmits a single Eth-
ernet packet containing sampled data. The program
attempts to send one packet every 500 µs exactly.
On the test platform, keeping such an extremely
short interval is not possible using a standard Linux
kernel, so we used Xenomai [11] to achieve better
real time performance. The program under test cre-
ates one high priority Xenomai thread which runs a
periodic timer set at 500 µs. In order to demon-
strate the effect of the FCSE, we also modified
the trivial-periodic example program to run its
timer in a one millisecond period. This second Xeno-
mai thread was executed with a lower priority than
the program under test.

Xenomai Kernel Min Ave Max Std Dev
Plain Linux 458 500 542 17.157
Guaranteed FCSE 456 500 534 1.969

TABLE 4: Packet Period (µs)

Xenomai Linux is able to deliver the correct av-
erage period both with and without the FCSE, as
the results in Table 4 show. However, the standard
deviation is noticeably higher without the FCSE.

Figure 9 shows the histogram of the packet trans-
mission period when using plain Xenomai. Notice
that the y-axis is logarithmically scaled in order to



highlight the worst case performance. The symmet-
rical form of this graph demonstrates how the Xeno-
mai scheduler is able to keep a periodic timer on
track. Whenever the timer overshoots a deadline,
the induced delay is always compensated in the next
period. This graph has two maxima around the av-
erage interval, offset about 15 µs. In addition, there
are two local maxima offset about 40 µs from the
center.
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FIGURE 9: Periodic Task - Plain
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FIGURE 10: Periodic Task - FCSE

Figure 10 shows the histogram when the FCSE
is enabled. In contrast to the previous graph, here
the histogram has a wedge shape with only one max-
imum in the center. Comparing the shapes of Fig-
ures 9 and 10 illustrates the consequence of the heavy
handed cache flushes which are necessary when the
FCSE is not enabled.

6 Conclusions and Future

Work

The ARM FCSE offers a method for avoiding costly
cache flushing during context switches. We presented
a minimally intrusive implementation of the FCSE
for the Linux kernel. Experimental evidence from ar-
tificial and real world tests shows that enabling the
FCSE can reduce the time to schedule processes by
dozens or even hundreds of microseconds. This per-
formance gain is significant enough to bring certain
real time applications within reach of Linux running
on ARMv5 processors.

The FCSE imposes fairly restrictive limitations
on programs. However, for systems which cannot ac-
cept the FCSE limitations, the benefits of the FCSE
can still be exploited by using our patch in the dy-
namic, best effort mode.

It is the authors’ wish to have the FCSE merged
into the mainstream ARM Linux kernel. The patch
has previously been presented on the mailing list,
and it will be resubmitted in small, more easily di-
gestible pieces in the near future. Some further
work needs to be done, namely identifying the other
ARMv5 machines supported by Linux and adapt-
ing their machine specific assembler files to benefit
from the FCSE. One interesting possibility not cov-
ered here would be to combine the FCSE with the
PREMPT RT patch and gauge its effectiveness in
that configuration.
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