
Finding Origins of Latencies Using Ftrace

Steven Rostedt
Red Hat, Inc.

1801 Varsity Drive,Raleigh, North Carolina 27606,USA
srostedt@redhat.com

Abstract

One of the difficult tasks analyzing Real-Time systems is finding a source/cause of an unexpected
latency. Is the latency caused by the application or the kernel? Is it a wake up scheduling latency or a
latency caused by interrupts being disabled, or is it a latency caused by preemption being disabled, or a
combination of disabled interrupts and preemption.

Ftrace has its origins from the -rt patch [1] latency tracer, and still carries the capabilities to track
down latencies. It can catch the maximum wake up latency for the highest priority task. This wake up
latency can also be tuned to only trace real-time processes. There is a latency tracer to find the latency
of how long interrupts and/or preemption are disabled. The maximum latency is captured and you can
even see the functions that were called in the mean time. Ftrace also has a rich array of tracing features
that can help determine if latencies are caused by the kernel, or simply are a bi-product of an application.

1 Introduction

Ftrace has its control files in the debugfs system.
This is usually mounted in /sys/kernel/debug. If
it is not already mounted, then you can mount it
yourself with:

mount -t debugfs nodev /sys/kernel/debug

cd /sys/kernel/debug/tracing

ls

available_events set_ftrace_notrace

available_filter_functions set_ftrace_pid

available_tracers set_graph_function

buffer_size_kb stack_max_size

current_tracer stack_trace

dyn_ftrace_total_info sysprof_sample_period

events trace

failures trace_marker

function_profile_enabled trace_options

options trace_pipe

per_cpu trace_stat

printk_formats tracing_cpumask

README tracing_enabled

saved_cmdlines tracing_max_latency

set_event tracing_on

set_ftrace_filter tracing_thresh

As you can tell, there are a lot of files in this
directory. We will only be concerning ourselves with
those that will help us trace latencies in the system.
Those are:

1. available tracers

2. current tracer

3. events

4. trace

5. trace marker

6. trace max latency

7. tracing on

The version of the kernel that I am using for this
paper is 2.6.31-rc6-rt4.

2 Enabling Plugin Tracers

Looking in the file available_tracers, you will
see the available tracers that have been configured.

We are most interested in irqsoff, preemptoff,
preemptirqsoff, wakeup_rt, and wakeup. To en-
able a plugin, you simply echo the name into the
current_tracer file:

echo preemptoff > current_tracer

All examples in this document will assume that
you have mounted the debugfs directory and changed
directory into the debugfs tracing directory.

You can see the tracer that is activated by cat’ing
the current_tracer file.

cat current_tracer
preemptoff

To disable the plugin, echo the special nop tracer
into the current_tracer file. The nop tracer is spe-
cial in that it is not a plugin tracer, but lets the user
disable all plugins.

echo nop > current_tracer
cat current_tracer
nop

3 Things That Might Cause
Latencies

There are various events that can trigger a latency.
First, lets define what a latency is. A latency is the
time between an event is suppose to occur and when
it actually does. The term latency tracer is really a
misnomer, because the tracing tools do not actually
trace latency, but instead it traces events that may
cause a latency.

Within the kernel, there are basically four differ-
ent events that can cause a latency.

1. Interrupts disabled - keeping interrupts from
calling their handlers when a device triggers
an interrupt to the CPU.

2. Preemption disabled - preventing a process
that just woke up from running.

3. Scheduling latency - the time it takes a process
to schedule in.

4. Interrupt inversion - the time that an interrupt
handler is performing a task that is lower in
priority than the task that it preempted.

Ftrace latency tracers can record the first three.
But the interrupt inversion is not covered by the la-
tency tracer but can be seen with other tracers.

4 Measuring Interrupts Dis-
abled

Ftrace piggy backs on top of lockdep [2] to mea-
sure interrupts disabled. Lockdep is a tool made by
Ingo Molnar that can detect possible deadlock sce-
narios within the kernel. It keeps track of locks that
are taken and can check the order of locks to ensure
that two locks are always taken in the proper or-
der. Lockdep also makes sure that a spinlock that
is used within an interrupt is not taken without dis-
abling interrupts. If you do not understand lockdep,
do not worry, it is beyond the scope of this paper.
What is important, is that lockdep keeps track of all
locations that interrupts are disabled as well as when
they are enabled. Ftrace uses this implementation to
record when interrupts are disabled and enabled.

Note: ftrace hooks into the lockdep infras-
tructure, but you do not need to enable lockdep
to use the interrupt tracer. By enabling lockdep
you will add even more overhead. If you are con-
cerned about measuring latency and not debugging
the locking of the kernel, then it is recommended to
keep lockdep disabled (CONFIG_PROVE_LOCKING and
CONFIG_LOCKDEP).

Measuring the time that interrupts are disabled
in the system is key to for analyzing causes of latency.
If interrupts are disabled when an event occurs, then
that event must wait till interrupts are enabled to
continue. The time it must wait is added latency on
top of the overhead to get to the event. When inter-
rupts are disabled, a device that sends an interrupt
to the CPU will not be noticed until interrupts are
re-enabled.

4.1 Irqsoff Latency Tracer

The plugin irqsoff is a way to measure times in the
kernel that interrupts are disabled. Listings 1, 2, 3,
and 4 show the output of running irqsoff tracer for
just a little while. As you can see by the fact that I
needed to break this up over 4 pages, it can get a bit
verbose. This is due to the function tracer.

The function tracer (enabled by CONFIG_
FUNCTION_TRACER) is a way to trace almost all func-
tions in the kernel. When function tracing is en-
abled, the kernel is compiled with the gcc option -pg.
This is a profiler that will make all functions call a
special function named mcount. One would realize

that this could cause a very large overhead, but if
the kernel is also configured with dynamic function
tracing (CONFIG_DYNAMIC_FTRACE) then these calls,
when not in use, are converted at run time to nops.
This allows the function tracer to have zero overhead
when not in use. If you do not understand this part,
don’t worry, you do not need to understand the im-
plementation to use it. Just realize that enabling the
dynamic function tracer gives you great power with
no overhead.

4.2 The Heisenberg Principle

Any computer scientist (or any scientist for that mat-
ter) should be aware of the Heisenberg Principle
[3]. Basically this means that the act of measuring
something can and will modify the result. This is es-
pecially true with the interrupt tracer and even more
so when the function tracer is enabled. The idea is to
trace the time interrupts are disabled, but by adding
a tracer to these core functions, it adds a little over-
head. By running with the function tracer, it adds
even more overhead to the time interrupts are dis-
abled, because we are tracing every function that is
called within the critical section.

You do not need to unconfigure the function
tracer to keep it from running while tracing inter-
rupt latency. There exists a proc file that lets you
disable the function tracer from running at run time.

echo 0 > /proc/sys/kernel/ftrace_enabled

This will allow you to find something a bit closer
to the actual latency1. Listing 5 shows the result of
a latency trace with the function tracer disabled.

To get a good idea of the overhead, the bench-
mark test hackbench [4] can show the results well.
Running hackbench with the function tracer enabled
yields a test run time of 47.686 seconds and a max
latency of 171 microseconds (way above the max
that we allow for the real-time kernel). Running
hackbench with the function tracing disabled, yields
a test run of 34.361 seconds and a max latency of 30
microseconds2. Note: running hackbench with both
tracers disabled only took a running time of 9.774
seconds. I do not know the latency because it was
not being traced.

Note: when enabling or disabling the function
tracing for the latency tracers, it is best to reset the
tracer or it may take effect. That is, echo in nop into
the current_tracer file and irqsoff again.

5 Reading the Trace

Before we continue to the other tracers, a descrip-
tion of how to read the output is in order. The lines
in the Listings of 1, 2, 3 and 4 are numbered. We
will go through some of the lines and explain their
meanings.

Lines 001 through 018 is the latency tracer
header, and is annotated with a ’#’ at the begin-
ning of the line. Line 001 states the name of the
current plugin tracer. Line 003 has the kernel ver-
sion that is executing (ignore the trace version, that
has not changed in a long time). Line 005 has a bit
of information. Here we see that the latency trace
recorded a 70 microsecond time that interrupts were
disabled. This may be different than the last trace
entry, but not by much, due to the tracer writing
entries after it took the finishing time stamp. The
#170/170 means that there was 170 entries printed
out of 170 that were recorded. Since the latency
trace ftrace plugins are usually small3 the two num-
bers should always match. But for other tracers, it is
quite possible to have the first number smaller than
the second due to the trace ring buffer overwriting
older data.

The CPU#0 shows that this latency happened
on CPU 0. Inside the parenthesis, the VP, KP,
SP and HP will always be zero since they are not
yet implemented. The M element shows what type
of preemption the kernel was configured at. Here
it is “preempt” but really should be “preempt-rt”.
Since the latency tracer has been replaced with the
upstream ftrace, this field has not been updated.
The other selections of preempt type are “desk-
top” for CONFIG PREEMPT VOLUNTARY (ker-
nel preempts only at preemption points) or “server”
for CONFIG PREEMPT NONE (no preemption in-
side the kernel). The #P:2 shows that there were 2
online CPUS active.

Line 007 shows information about the task
that was executing when the latency was recorded.
The task here was “sirqtimer/0” with process id
5. The policy shows that it was running un-
der SCHED FIFO (1) where as 0 would be a
non real-time running the SCHED NORMAL policy.
SCHED RR is represented with 2, SCHED BATCH
is 3, and SCHED IDLE is 5. Because this is run-
ning under a real-time policy, the nice value can be
ignored. The rt_prio field is the real-time prio as

1Note: you must have a space between the 0 and the > otherwise the shell will interpret it as a redirection of standard I/O.
2hackbench did not even get on the radar in this run
3170 is small compared to thousands that the function tracer can do.

maintained in the kernel. This can be a little con-
fusing. Real time priorities for users range from 1 to
99, but these are represented in the kernel as 98 to 0,
where the lower the number, the higher the priority.
The trace shows the priority to be 49, but that is
the kernel’s representation. To convert the rt_prio
to the user priority, subtract it from 99. The user
priority of this task is actually 50.

The trace_hardirqs_off_thunk is a helper
function called from assembly to trace when inter-
rupts are disabled there, usually by entering of an
interrupt. When an interrupt occurs, interrupts are
disabled. Looking at the first function called on line
020 we can see the APIC timer interrupt went off.

Line 020 starts off with the cmd (the kernel
name of the task) and the process id. The task
at this recording is bash and its process id is
2724. Even though the trace header shows the
task was sirq-timer a schedule switch happened
inside this disabling of interrupts and ending task
was sirq-timer. The next five items are labeled in
the header. The first is the CPU number. The sec-
ond is whether interrupts were disabled. A d means
that interrupts are disabled. In the irqs off trace, all
lines should show that interrupts are disabled. When
interrupts are enabled a period (.) will be displayed.

The third item is for need-resched. When the
kernel determines that a schedule should take place
because a higher priority task woke up or the current
running task is at the end of its time slice, it sets a
need-resched flag to signal that a schedule should
take place. The trace will annotate this with a N
in that field. Line 093 shows this being set when we
wake up the sirq-timer task that is of higher pri-
ority than the bash task. When the need-resched
flag is not set, a period (.) is displayed.

The forth item denotes if we are in a hard inter-
rupt or soft interrupt. The soft interrupt is a little
misnomer because it really only denotes soft inter-
rupts are disabled. Soft interrupts are disabled when
ever the kernel is running a soft interrupt, as one
soft interrupt can not preempt another. A h means
that the trace was recorded in an interrupt. A s de-
notes that soft interrupts are disabled or the trace
was recording inside a soft interrupt. A H denotes
that the trace was recorded in an interrupt and soft
interrupts are also disabled. Since the Real-Time
Linux kernel runs the soft interrupts as threads, the
soft interrupt disabling is not applicable. When hard
and soft interrupts are enabled, a period (.) is dis-
played.

The fifth item denotes the preempt disable

depth. When a kernel disables preemption in crit-
ical sections4, it uses a preempt counter. The pre-
empt count is recorded in all traces, and this field
shows the value when it is greater than zero. When
preemption is enabled, this field will contain a pe-
riod (.). Line 041 shows a preempt depth of 1 that
was caused by the _atomic_spin_lock just before
it. Line 046 shows a preempt depth of 2 caused by
the _atomic_spin_lock_irqsave before it.

Lines 181 and 182 shows the schedule switch that
took place between the tasks bash and sirq-timer.
Only the first 8 characters of the task name are
printed, as can be seen by the truncated name of
the task sirq-timer.

6 Preemption Disabled Trac-
ing

When interrupts are disabled, events from devices
and timers and even inter-processor communication
is disabled. But the kernel can keep interrupts en-
abled but disable preemption. This allows devices
and timers to be able to notify the CPU that an
event has happened, but if a task should wake up
because of it, it must wait till the kernel comes to
a place it can preempt before it will schedule. The
preemptoff plugin tracer will trace the maximum
time that preemption is disabled.

Measuring the time preemption is disabled may
be something used for academics, but it has really no
practical meaning by itself. Being able to trace the
time that both interrupts are disabled and/or pre-
emption is disabled is much more informative. This
is the total time that a task can not be scheduled. If
interrupts are disabled, no event can occur to cause
a preemption. The scheduler will not be called if
preemption is enabled but interrupts are not. The
preemptirqsoff plugin tracer shows this informa-
tion.

[root@mxf tracing]# echo preemptirqsoff > current_tracer

The output for this trace is not much different
than the output of the irqsoff trace so I will omit
it from this paper.

7 Using the Event Tracer

Since the function tracing can add a large overhead
it is not always practical to use it. But without the

4In this case we can see spin locks disable preemption

function tracing enabled, the information may not
be enough to see what is happening. Luckily, there
is the event tracer. The event tracing is not a plu-
gin. When events are enabled, they will be recorded
in any plugin, including the special nop plugin.

There are two ways to enable events. One is with
the set_event file and the other is with the events
directory. The set_event file is a way to echo in
events to enable them. The available events are:

[root@mxf tracing]# cat available_events

skb:kfree_skb

block:block_rq_abort

block:block_rq_insert

block:block_rq_issue

block:block_rq_requeue

block:block_rq_complete

block:block_bio_bounce

block:block_bio_complete

block:block_bio_backmerge

block:block_bio_frontmerge

block:block_bio_queue

block:block_getrq

block:block_sleeprq

block:block_plug

block:block_unplug_timer

block:block_unplug_io

block:block_split

block:block_remap

kmem:kmalloc

kmem:kmem_cache_alloc

kmem:kmalloc_node

kmem:kmem_cache_alloc_node

kmem:kfree

kmem:kmem_cache_free

lockdep:lock_acquire

lockdep:lock_release

workqueue:workqueue_insertion

workqueue:workqueue_execution

workqueue:workqueue_creation

workqueue:workqueue_destruction

irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_entry

irq:softirq_exit

sched:sched_kthread_stop

sched:sched_kthread_stop_ret

sched:sched_wait_task

sched:sched_wakeup

sched:sched_wakeup_new

sched:sched_switch

sched:sched_migrate_task

sched:sched_process_free

sched:sched_process_exit

sched:sched_task_setprio

sched:sched_process_wait

sched:sched_process_fork

sched:sched_signal_send

The name before the colon is the system that the
event is under. The event name is after the colon5.
By echoing in the system name you will enable all
the events in that system.

[root@mxf tracing]# echo irq > set_event

[root@mxf tracing]# cat set_event

irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_entry

irq:softirq_exit

Echoing in just the event name will enable the
event as well. But if there are two event names un-
der two systems that are identical, then both will be
enabled. Currently no two event names are identical.

Adding new names follows shell concatenation
rules. Using a ’>’ will truncate the file and disable
the events that were previously enabled. Using a
’>>’ will add new events without disabling the ones
that are currently enabled.

[root@mxf tracing]# echo sched_switch >> set_event

[root@mxf tracing]# cat set_event

irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_entry

irq:softirq_exit

sched:sched_switch

The ’ !’ character can be used to remove events.
Note that this is also a bash command so it must be
added in quotes.

[root@mxf tracing]# echo ’!softirq_entry’ >> set_event

[root@mxf tracing]# cat set_event

irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_exit

sched:sched_switch

The events directory is also useful. The direc-
tory structure is made of the event systems, and
within each system directory is the events. Each level
has an enable file.

[root@mxf tracing]# ls events/

block ftrace header_page kmem sched

workqueue enable header_event irq lockdep skb

[root@mxf tracing]# ls events/irq

enable irq_handler_entry softirq_entry

filter irq_handler_exit softirq_exit

[root@mxf tracing]# ls events/irq/softirq_exit/

enable filter format id

5The kernel I have has lockdep enabled where you can see from the lockdep events

To enable all events echo 1 into events/enable.
To enable all events within a system, echo 1 into the
system enable file (events/irq/enable). To enable
just a single event, echo 1 into the enable file for that
event (events/irq/softirq_entry/enable). Echo-
ing in a 0 will disable the same events that a 1 would
enable.

Just enabling the scheduling events yields a nice
useful output, as seen in Listing 6.

8 Tracing Scheduling Latencies

The time a task is awoken to the time it is sched-
uled is considered the scheduling latency. Two plugin
tracers exist to measure this latency. The wakeup
plugin will consider all tasks and the wakeup rt will
only consider real-time tasks to trace. Both of these
plugins only trace the current highest priority task of
the system. The trace records the max latency, and
tracing anything but the highest priority task would
lose the trace for the highest task, because the high-
est task may cause a lower priority task to take a
long time to be scheduled.

If you are concerned about the wake up times of
all tasks, simply enable all the scheduling events and
examine the trace with the nop plugin.

Listing 7 shows the output of the wakeup plugin.
Notice that the time is quite exaggerated. This is be-
cause of the way the wakeup tracer works. The tracer
picks the highest priority task that has started. If it
wakes up another task of equal priority it does not
switch the trace to that task. Although we see that
our wake up latency was 150 microseconds, the true
wake up was only 7 microseconds. What happened
was after the highest priority task hald-addon-stor
with pid 2103 was woken up, we see that the task
hald with pid 1952 was woken up afterwards. But
since the two tasks have the same priority, the tracer
did not switch over to test the wake up time of the
second task. The scheduler chose the second task
(hald) first, and the trace included the entire time
that the task hald ran. Luckily it only ran for 142
microseconds.

If we chose not to enable the scheduling events
we would not have seen the hald task wake up and
we would assume that the true scheduling latency
was 150 microseconds.

The wakeup_rt plugin only records real-time
tasks. The tracer only records the maximum trace

which makes the wakeup plugin hide real-time tasks
latencies. If it constantly records the long latency
that is described above, then we will never see the
latencies of real-time tasks that we care about. This
is why there are two plugins to record scheduling la-
tencies. Listing 8 shows the output of the wakeup_rt
plugin.

The values in the scheduling events needs a little
explanation. The first trace item (which is from the
wakeup_rt tracer) shows that task with pid 6808 at
priority 1206. The R means that it is in the running
state7. The + denotes that it is waking up the task
that follows. The task that is being woken up is the
migration/0 task with the pid of 3. It’s priority is
zero which is the highest priority Linux supports (99
- 0 = 99 user level priority). The migration/0 task
is in the sleep state denoted by the S. The number
inside the brackets ([000]) is the CPU that the task
that is being woken up on is assigned to. The task
may migrate before it wakes up.

The third trace item is a scheduling event (de-
noted with the sched_switch:). This even is the
scheduling context switch between the current run-
ning task (bash) and the task that was just woken
up (migration/0). This time the first number in the
bracket ([120]) is the priority of the current task
with the state of the task in parenthesis ((R)). The
“==>” also denotes a scheduling switch is occurring,
followed by the task that is scheduling, its pid and
in brackets, its priority ([0]).

The third and last events are pretty much iden-
tical. The third event came from enabling the
scheduling events, and the last event is part of the
wakeup_rt plugin tracer.

9 Adding Placeholders into the
Trace

When you discover that there exists an unexpected
latency in your system and none of the latency plu-
gin tracers showed anything, then you may need to
confirm that the issue may be with something in
userspace. Assuming that you have access to the
source code of the application, you can make have
the application write into the tracer ring buffer.

Just enabling the events (for now we’ll enable
the sched and irq events) and running with the nop
tracer, you can watch what is happening with your
application.

6This is the kernel internal priority. Anything over 100 is a nice value. Here it is 120 - 20 = nice value of zero
7This field holds the same enumerations that top uses.

Two particular files are of importance.

1. tracing on - Enabling and disabling the
tracer.

2. trace marker - Writing into the trace buffer.

Since the tracing facility uses a ring buffer that
overwrites older data with newer data, it is not im-
portant to enabled the trace, but instead let it con-
stantly run. When you hit a point where you detect
a latency is when you want to disable it. Having a
file descriptor opened to both of the above files lets
you see what is happening inside the application as
well as stop tracing as soon as a latency is detected.
Stopping the trace as soon as it happens is critical
since you do not want to overwrite the trace that
recorded the latency, as well as it will be easier to
find the trouble area if it is relatively close to the
end of the trace.

[root@mxf tracing]# echo Hello Dresden > trace_marker

[root@mxf tracing]# cat trace

tracer: nop

#

TASK-PID CPU# TIMESTAMP FUNCTION

| | | | |

bash-2702 [001] 8934.777334: 0: Hello Dresden

Inside the application, you can add comments to
the trace at particular points and use them as mark-
ers to what is happening in the kernel.

write(trace_mark_fd, "hit this point\n", 15);

When you detect a latency inside the application
you can stop the trace by writing the ASCII charac-
ter ’0’ (zero) to the tracing_on file.

/* Detected latency, stop the trace */

write(tracing_on_fd, "0", 1);

Using this in combination with the event tracers
(or even the full function tracer) will help tremen-
dously with finding latency problems in your appli-
cation.

There is another plugin that is useful with the
above: The syscall plugin. This is similar to the

strace tool but it traces all programs, not just one.
The output ends up in the trace. Mixing the syscall
plugin along with the event tracing will give lots of
useful information to pin point trouble areas in you
application.

10 Conclusions

During the early development of the -rt patch, some
of our first testers were from audio users. People us-
ing the jack [5] utility to record music. They found
the -rt patch gave the minimum latencies to record
without defects. But every so often, they would come
across something that would exceed the minimum
latency, and would complain to us. Using the early
latency_tracer we were able to find bugs in the ker-
nel that caused their latencies and fixed them. But
there were times that the latency_tracer proved
that the latency was not in the kernel, and with fur-
ther investigation, bugs in the jack utility were being
discovered.

When your application fails to meet a deadline,
it can happen due to several issues: hardware, la-
tency in the kernel, or a bug in the application it-
self. When you discover something has gone wrong,
the next step is to find what and where the problem
arises. Having a good set of tracing utilities at your
disposal will facilitate solving these issues.

References

[1] RT Patch,http://www.kernel.org/pub/
linux/kernel/projects/rt/, http:
//rt.wiki.kernel.org/index.php/Main_Page

[2] lockdep, Ingo Molnar, See Documentation/
lockdep-design.txt in the Linux kernel source.

[3] Heisenberg Principle, http://en.wikipedia.
org/wiki/Uncertainty_principle

[4] hackbench, Rusty Russell, http://
devresources.linux-foundation.org/
craiger/hackbench/src/hackbench.c

[5] JackAudio, http://jackaudio.org/

001 : # t r a c e r : i r q s o f f
002 : #
003 : # i r q s o f f l a t ency t r a c e v1 . 1 . 5 on 2.6.31− rc6−r t4
004 : # −−
005 : # la t ency : 70 us , #170/170 , CPU#0 | (M: preempt VP: 0 , KP: 0 , SP : 0 HP: 0 #P: 2)
006 : # −−−−−−−−−−−−−−−−−
007 : # | task : s i r q−t imer/0−5 (uid : 0 n i c e :−5 p o l i c y : 1 r t p r i o : 4 9)
008 : # −−−−−−−−−−−−−−−−−
009 : #
010 : # −−−−−−=> CPU#
011 : # / −−−−−=> i r q s−o f f
012 : # | / −−−−=> need−resched
013 : # | | / −−−=> hard i rq / s o f t i r q
014 : # | | | / −−=> preempt−depth
015 : # | | | | /
016 : # | | | | | delay
017 : # cmd pid | | | | | time | c a l l e r
018 : # \ / | | | | | \ | /
019 : bash−2724 0d . . . 1us : t r a c e h a r d i r q s o f f t h u n k <−s av e a rg s
020 : bash−2724 0d . . . 1us : sm p a p i c t i me r i n t e r r u p t <−a p i c t i m e r i n t e r r u p t
021 : bash−2724 0d . . . 2us : a p i c w r i t e <−s m p a p i c t i me r i n t e r r u p t
022 : bash−2724 0d . . . 2us : nat ive ap ic mem wri te <−a p i c w r i t e
023 : bash−2724 0d . . . 2us : e x i t i d l e <−s m p a p i c t i me r i n t e r r u p t
024 : bash−2724 0d . . . 3us : i r q e n t e r <−s m p a p i c t i me r i n t e r r u p t
025 : bash−2724 0d . . . 3us : r c u i r q e n t e r <− i r q e n t e r
026 : bash−2724 0d . . . 4us : i d l e c p u <− i r q e n t e r
027 : bash−2724 0d . h . 4us : h r t i m e r i n t e r r u p t <−s m p a p i c t i me r i n t e r r u p t
028 : bash−2724 0d . h . 5us : kt ime get <−h r t i m e r i n t e r r u p t
029 : bash−2724 0d . h . 5us : c l o c k s o u r c e r e a d <−kt ime get
030 : bash−2724 0d . h . 5us : a t o m i c s p i n l o c k <−h r t i m e r i n t e r r u p t
031 : bash−2724 0d . h1 6us : h r t i m e r r t d e f e r <−h r t i m e r i n t e r r u p t
032 : bash−2724 0d . h1 6us : run hr t ime r <−h r t i m e r i n t e r r u p t
033 : bash−2724 0d . h1 7us : remove hrt imer <− run hr t ime r
034 : bash−2724 0d . h1 7us : t i m e r s t a t s a c c o u n t h r t i m e r <− run hr t ime r
035 : bash−2724 0d . h1 7us : a t omi c sp in un l o ck <− run hr t ime r
036 : bash−2724 0d . h . 8us : t i c k s c h e d t i m e r <− run hr t ime r
037 : bash−2724 0d . h . 8us : kt ime get <−t i c k s c h e d t i m e r
038 : bash−2724 0d . h . 8us : c l o c k s o u r c e r e a d <−kt ime get
039 : bash−2724 0d . h . 9us : t i c k d o u p d a t e j i f f i e s 6 4 <−t i c k s c h e d t i m e r
040 : bash−2724 0d . h . 9us : a t o m i c s p i n l o c k <−t i c k d o u p d a t e j i f f i e s 6 4
041 : bash−2724 0d . h1 10 us : do t imer <−t i c k d o u p d a t e j i f f i e s 6 4
042 : bash−2724 0d . h1 10 us : update wa l l t ime <−do t imer
043 : bash−2724 0d . h1 10 us : c l o c k s o u r c e r e a d <−update wa l l t ime
044 : bash−2724 0d . h1 11 us : c l o c k s o u r c e g e t n e x t <−update wa l l t ime
045 : bash−2724 0d . h1 11 us : a t o m i c s p i n l o c k i r q s a v e <−c l o c k s o u r c e g e t n e x t
046 : bash−2724 0d . h2 12 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−c l o c k s o u r c e g e t n e x t
047 : bash−2724 0d . h1 12 us : u p d a t e v s y s c a l l <−update wa l l t ime
048 : bash−2724 0d . h1 13 us : a t o m i c s p i n l o c k <−u p d a t e v s y s c a l l
049 : bash−2724 0d . h2 13 us : a t omi c sp in un l o ck <−u p d a t e v s y s c a l l
050 : bash−2724 0d . h1 14 us : c a l c g l o b a l l o a d <−do t imer
051 : bash−2724 0d . h1 14 us : a t omi c sp in un l o ck <−t i c k d o u p d a t e j i f f i e s 6 4
052 : bash−2724 0d . h . 14 us : update p roce s s t imes <−t i c k s c h e d t i m e r
053 : bash−2724 0d . h . 15 us : a c c o u n t p r o c e s s t i c k <−update p roce s s t imes
054 : bash−2724 0d . h . 15 us : account system time <−a c c o u n t p r o c e s s t i c k
055 : bash−2724 0d . h . 16 us : cpuacc t upda t e s t a t s <−account system time
056 : bash−2724 0d . h . 16 us : r c u r e a d l o c k <−cpuacc t upda t e s t a t s
057 : bash−2724 0d . h . 17 us : r c u r e a d u n l o c k <−cpuacc t upda t e s t a t s
058 : bash−2724 0d . h . 17 us : a c c t u p d a t e i n t e g r a l s <−account system time
059 : bash−2724 0d . h . 18 us : j i f f i e s t o t i m e v a l <−a c c t u p d a t e i n t e g r a l s
060 : bash−2724 0d . h . 18 us : r u n l o c a l t i m e r s <−update p roce s s t imes
061 : bash−2724 0d . h . 18 us : hr t imer run queues <−r u n l o c a l t i m e r s

Listing 1: Interrupts Off Latency Trace (Part 1)

062 : bash−2724 0d . h . 19 us : r a i s e s o f t i r q <−r u n l o c a l t i m e r s
063 : bash−2724 0d . h . 19 us : r a i s e s o f t i r q i r q o f f <− r a i s e s o f t i r q
064 : bash−2724 0d . h . 19 us : wakeup so f t i rqd <− r a i s e s o f t i r q i r q o f f
065 : bash−2724 0d . h . 20 us : wake up process <−wakeup so f t i rqd
066 : bash−2724 0d . h . 20 us : t ry to wake up <−wake up process
067 : bash−2724 0d . h . 21 us : t a s k r q l o c k <−t ry to wake up
068 : bash−2724 0d . h . 21 us : a t o m i c s p i n l o c k <−t a s k r q l o c k
069 : bash−2724 0d . h1 21 us : updat e rq c l o ck <−t ry to wake up
070 : bash−2724 0d . h1 22 us : s e l e c t t a s k r q r t <−t ry to wake up
071 : bash−2724 0d . h1 22 us : a c t i v a t e t a s k <−t ry to wake up
072 : bash−2724 0d . h1 23 us : enqueue task <−a c t i v a t e t a s k
073 : bash−2724 0d . h1 23 us : enqueue ta sk r t <−enqueue task
074 : bash−2724 0d . h1 23 us : e n q u e u e r t e n t i t y <−enqueue ta sk r t
075 : bash−2724 0d . h1 24 us : e n q u e u e r t e n t i t y <−e n q u e u e r t e n t i t y
076 : bash−2724 0d . h1 24 us : c p u p r i s e t <− e n q u e u e r t e n t i t y
077 : bash−2724 0d . h1 25 us : a t o m i c s p i n l o c k i r q s a v e <−c p u p r i s e t
078 : bash−2724 0d . h2 25 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−c p u p r i s e t
079 : bash−2724 0d . h1 26 us : a t o m i c s p i n l o c k i r q s a v e <−c p u p r i s e t
080 : bash−2724 0d . h2 26 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−c p u p r i s e t
081 : bash−2724 0d . h1 27 us : update r t mig ra t i on <− e n q u e u e r t e n t i t y
082 : bash−2724 0d . h1 27 us : check preempt curr <−t ry to wake up
083 : bash−2724 0d . h1 28 us : check preempt wakeup <−check preempt curr
084 : bash−2724 0d . h1 28 us : update curr <−check preempt wakeup
085 : bash−2724 0d . h1 28 us : c a l c d e l t a f a i r <−update curr
086 : bash−2724 0d . h1 29 us : cpuacct charge <−update curr
087 : bash−2724 0d . h1 29 us : r c u r e a d l o c k <−cpuacct charge
088 : bash−2724 0d . h1 30 us : r c u r e a d u n l o c k <−cpuacct charge
089 : bash−2724 0d . h1 30 us : account group exec runt ime <−update curr
090 : bash−2724 0d . h1 30 us : r e s ched ta s k <−check preempt wakeup
091 : bash−2724 0d . h1 31 us : t e s t t s k n e e d r e s c h e d <−r e s ched ta sk
092 : bash−2724 0d . h1 31 us : t e s t t i t h r e a d f l a g <−t e s t t s k n e e d r e s c h e d
093 : bash−2724 0dNh1 32 us : ta sk wake up rt <−t ry to wake up
094 : bash−2724 0dNh1 32 us : t e s t t s k n e e d r e s c h e d <−ta sk wake up rt
095 : bash−2724 0dNh1 32 us : t e s t t i t h r e a d f l a g <−t e s t t s k n e e d r e s c h e d
096 : bash−2724 0dNh1 33 us : t a s k r q u n l o c k <−t ry to wake up
097 : bash−2724 0dNh1 33 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−t a s k r q u n l o c k
098 : bash−2724 0dNh . 33 us : preempt schedule <− a t o m i c s p i n u n l o c k i r q r e s t o r e
099 : bash−2724 0dNh . 34 us : s o f t l o c k u p t i c k <−r u n l o c a l t i m e r s
100 : bash−2724 0dNh . 34 us : t ouch so f t l o ckup watchdog <−s o f t l o c k u p t i c k
101 : bash−2724 0dNh . 35 us : rcu pending <−update p roce s s t imes
102 : bash−2724 0dNh . 35 us : r c u c h e c k c a l l b a c k s <−update p roce s s t imes
103 : bash−2724 0dNh . 36 us : i d l e c p u <−r c u c h e c k c a l l b a c k s
104 : bash−2724 0dNh . 36 us : r c u t r y f l i p <−r c u c h e c k c a l l b a c k s
105 : bash−2724 0dNh . 36 us : r c u p r e e m p t t r a c e t r y f l i p 1 <−r c u t r y f l i p
106 : bash−2724 0dNh . 37 us : a t o m i c s p i n t r y l o c k <−r c u t r y f l i p
107 : bash−2724 0dNh1 37 us : r c u p r e e m p t t r a c e t r y f l i p a 1 <−r c u t r y f l i p
108 : bash−2724 0dNh1 37 us : cpumask next <−r c u t r y f l i p
109 : bash−2724 0dNh1 38 us : cpumask next <−r c u t r y f l i p
110 : bash−2724 0dNh1 38 us : cpumask next <−r c u t r y f l i p
111 : bash−2724 0dNh1 39 us : r c u p r e e m p t t r a c e t r y f l i p a 2 <−r c u t r y f l i p
112 : bash−2724 0dNh1 39 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−r c u t r y f l i p

Listing 2: Interrupts Off Latency Trace (Part 2)

113 : bash−2724 0dNh . 40 us : preempt schedule <− a t o m i c s p i n u n l o c k i r q r e s t o r e
114 : bash−2724 0dNh . 40 us : a t o m i c s p i n l o c k i r q s a v e <−r c u c h e c k c a l l b a c k s
115 : bash−2724 0dNh1 40 us : r c u p r e e m p t t r a c e c h e c k c a l l b a c k s <−r c u c h e c k c a l l b a c k s
116 : bash−2724 0dNh1 41 us : r c u a d v a n c e c a l l b a c k s <−r c u c h e c k c a l l b a c k s
117 : bash−2724 0dNh1 41 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−r c u c h e c k c a l l b a c k s
118 : bash−2724 0dNh . 42 us : preempt schedule <− a t o m i c s p i n u n l o c k i r q r e s t o r e
119 : bash−2724 0dNh . 42 us : s c h e d u l e r t i c k <−update p roce s s t imes
120 : bash−2724 0dNh . 42 us : kt ime get <−s c h e d c l o c k t i c k
121 : bash−2724 0dNh . 43 us : c l o c k s o u r c e r e a d <−kt ime get
122 : bash−2724 0dNh . 43 us : a t o m i c s p i n l o c k <−s c h e d u l e r t i c k
123 : bash−2724 0dNh1 44 us : updat e rq c l o ck <−s c h e d u l e r t i c k
124 : bash−2724 0dNh1 44 us : t a s k t i c k f a i r <−s c h e d u l e r t i c k
125 : bash−2724 0dNh1 44 us : update curr <−t a s k t i c k f a i r
126 : bash−2724 0dNh1 45 us : c a l c d e l t a f a i r <−update curr
127 : bash−2724 0dNh1 45 us : cpuacct charge <−update curr
128 : bash−2724 0dNh1 45 us : r c u r e a d l o c k <−cpuacct charge
129 : bash−2724 0dNh1 46 us : r c u r e a d u n l o c k <−cpuacct charge
130 : bash−2724 0dNh1 46 us : account group exec runt ime <−update curr
131 : bash−2724 0dNh1 47 us : a t omi c sp in un l o ck <−s c h e d u l e r t i c k
132 : bash−2724 0dNh . 48 us : preempt schedule <− a tomi c sp in un l o ck
133 : bash−2724 0dNh . 48 us : p e r f c o u n t e r t a s k t i c k <−s c h e d u l e r t i c k
134 : bash−2724 0dNh . 48 us : f i n d n e w i l b <−s c h e d u l e r t i c k
135 : bash−2724 0dNh . 49 us : cpumask f i r s t <−f i n d n e w i l b
136 : bash−2724 0dNh . 49 us : re sched cpu <−s c h e d u l e r t i c k
137 : bash−2724 0dNh . 49 us : a t o m i c s p i n t r y l o c k <−resched cpu
138 : bash−2724 0dNh1 50 us : r e s c hed ta s k <−resched cpu
139 : bash−2724 0dNh1 50 us : t e s t t s k n e e d r e s c h e d <−r e s ched ta sk
140 : bash−2724 0dNh1 51 us : t e s t t i t h r e a d f l a g <−t e s t t s k n e e d r e s c h e d
141 : bash−2724 0dNh1 51 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−resched cpu
142 : bash−2724 0dNh . 52 us : preempt schedule <− a t o m i c s p i n u n l o c k i r q r e s t o r e
143 : bash−2724 0dNh . 52 us : run po s i x cpu t ime r s <−update p roce s s t imes
144 : bash−2724 0dNh . 52 us : p r o f i l e t i c k <−t i c k s c h e d t i m e r
145 : bash−2724 0dNh . 53 us : hr t imer forward <−t i c k s c h e d t i m e r
146 : bash−2724 0dNh . 53 us : a t o m i c s p i n l o c k <− run hr t ime r
147 : bash−2724 0dNh1 54 us : enqueue hrt imer <− run hr t ime r
148 : bash−2724 0dNh1 54 us : a t omi c sp in un l o ck <−h r t i m e r i n t e r r u p t
149 : bash−2724 0dNh . 55 us : preempt schedule <− a tomi c sp in un l o ck
150 : bash−2724 0dNh . 55 us : t i ck program event <−h r t i m e r i n t e r r u p t
151 : bash−2724 0dNh . 55 us : t i ck dev program event <−t i ck program event
152 : bash−2724 0dNh . 56 us : kt ime get <−t i ck dev program event
153 : bash−2724 0dNh . 56 us : c l o c k s o u r c e r e a d <−kt ime get
154 : bash−2724 0dNh . 56 us : c l ockevents program event <−t i ck dev program event
155 : bash−2724 0dNh . 57 us : l a p i c n e x t e v e n t <−c lockevents program event
156 : bash−2724 0dNh . 57 us : a p i c w r i t e <−l a p i c n e x t e v e n t
157 : bash−2724 0dNh . 57 us : nat ive ap ic mem wri te <−a p i c w r i t e
158 : bash−2724 0dNh . 58 us : i r q e x i t <−s m p a p i c t i me r i n t e r r u p t
159 : bash−2724 0dN. 1 58 us : d o s o f t i r q <− i r q e x i t
160 : bash−2724 0dN. 1 59 us : d o s o f t i r q <−c a l l s o f t i r q
161 : bash−2724 0dN. 1 59 us : wakeup so f t i rqd <− d o s o f t i r q
162 : bash−2724 0dN. 1 59 us : r c u i r q e x i t <− i r q e x i t
163 : bash−2724 0dN. 1 60 us : i d l e c p u <− i r q e x i t
164 : bash−2724 0dN . . 60 us : p r e empt s chedu l e i rq <−r e t i n t k e r n e l

Listing 3: Interrupts Off Latency Trace (Part 3)

165 : bash−2724 0dN . . 61 us : s c h e d u l e <−preempt schedu l e i rq
166 : bash−2724 0dN . . 61 us : r c u q s c t r i n c <− s c h e d u l e
167 : bash−2724 0dN. 1 62 us : a t o m i c s p i n l o c k i r q <− s c h e d u l e
168 : bash−2724 0dN. 2 62 us : updat e rq c l o ck <− s c h e d u l e
169 : bash−2724 0d . . 2 63 us : p u t p r e v t a s k f a i r <− s c h e d u l e
170 : bash−2724 0d . . 2 63 us : update curr <−p u t p r e v t a s k f a i r
171 : bash−2724 0d . . 2 63 us : c a l c d e l t a f a i r <−update curr
172 : bash−2724 0d . . 2 64 us : cpuacct charge <−update curr
173 : bash−2724 0d . . 2 64 us : r c u r e a d l o c k <−cpuacct charge
174 : bash−2724 0d . . 2 65 us : r c u r e a d u n l o c k <−cpuacct charge
175 : bash−2724 0d . . 2 65 us : account group exec runt ime <−update curr
176 : bash−2724 0d . . 2 65 us : e n q u e u e e n t i t y <−p u t p r e v t a s k f a i r
177 : bash−2724 0d . . 2 66 us : p i c k n e x t t a s k <− s c h e d u l e
178 : bash−2724 0d . . 2 66 us : p i c k n e x t t a s k r t <−p i c k n e x t t a s k
179 : bash−2724 0d . . 2 66 us : dequeue pushab le task <−p i c k n e x t t a s k r t
180 : bash−2724 0d . . 2 67 us : p e r f c o u n t e r t a s k s c h e d o u t <− s c h e d u l e
181 : bash−2724 0d . . 2 68 us : u n l a z y f p u <− s w i t c h t o
182 : s i r q−tim−5 0d . . 2 68 us : f i n i s h t a s k s w i t c h <−th r ead re tu rn
183 : s i r q−tim−5 0d . . 2 68 us : n e e d s p o s t s c h e d u l e r t <− f i n i s h t a s k s w i t c h
184 : s i r q−tim−5 0d . . 2 69 us : p e r f c o u n t e r t a s k s c h e d i n <− f i n i s h t a s k s w i t c h
185 : s i r q−tim−5 0d . . 2 69 us : a t omi c sp in un l o ck <− f i n i s h t a s k s w i t c h
186 : s i r q−tim−5 0d . . . 70 us : t r a c e h a r d i r q s o n <−schedu le
187 : s i r q−tim−5 0d . . . 70 us : t ime hard i rq s on <−schedu le

Listing 4: Interrupts Off Latency Trace (Part 4)

[root@mxf t r a c i n g]# echo 0 > / proc / sys / ke rne l / f t r a c e e n a b l e d
[root@mxf t r a c i n g]# echo i r q s o f f > c u r r e n t t r a c e r
[root@mxf t r a c i n g]# cat t rac ing max la t ency
19
[root@mxf t r a c i n g]# cat t r a c e

t r a c e r : i r q s o f f
#
i r q s o f f l a t ency t r a c e v1 . 1 . 5 on 2.6.31− rc6−r t4
−−
latency : 19 us , #3/3, CPU#0 | (M: preempt VP: 0 , KP: 0 , SP : 0 HP: 0 #P: 2)
−−−−−−−−−−−−−−−−−
| task : gnome−s e t t i n g s −−2669 (uid :42 n i c e : 0 p o l i c y : 0 r t p r i o : 0)
−−−−−−−−−−−−−−−−−
#
−−−−−−=> CPU#
/ −−−−−=> i r q s−o f f
| / −−−−=> need−resched
| | / −−−=> hard i rq / s o f t i r q
| | | / −−=> preempt−depth
| | | | /
| | | | | delay
cmd pid | | | | | time | c a l l e r
\ / | | | | | \ | /
gnome−se−2669 0d . . . 2us+: t r a c e h a r d i r q s o f f t h u n k <−s av e a rg s
gnome−se−2669 0dN . . 19 us : t r a c e ha rd i r q s on thunk <−r e t i n t c h e c k
gnome−se−2669 0dN . . 20 us : t ime hard i rq s on <−r e t i n t c h e c k

Listing 5: Interrupts Off Latency Trace (No Functions)

[root@mxf t r a c i n g]# echo 0 > / proc / sys / ke rne l / f t r a c e e n a b l e d
[root@mxf t r a c i n g]# echo 1 > events / sched / enable
[root@mxf t r a c i n g]# echo p r e e m pt i r q so f f > c u r r e n t t r a c e r
[root@mxf t r a c i n g]# cat t r a c e

t r a c e r : p r e e m pt i r q s o f f
#
pr e e mp t i r q s o f f l a t ency t r a c e v1 . 1 . 5 on 2.6.31− rc6−r t4
−−
latency : 12 us , #6/6, CPU#1 | (M: preempt VP: 0 , KP: 0 , SP : 0 HP: 0 #P: 2)
−−−−−−−−−−−−−−−−−
| task : bash−2653 (uid : 0 n i c e : 0 p o l i c y : 0 r t p r i o : 0)
−−−−−−−−−−−−−−−−−
#
−−−−−−=> CPU#
/ −−−−−=> i r q s−o f f
| / −−−−=> need−resched
| | / −−−=> hard i rq / s o f t i r q
| | | / −−=> preempt−depth
| | | | /
| | | | | delay
cmd pid | | | | | time | c a l l e r
\ / | | | | | \ | /

bash−2653 1d . . . 1us+: t r a c e h a r d i r q s o f f <−t a s k r q l o c k
bash−2653 1d . . 2 3us+: sched wakeup : task sshd :2650 [1 2 0] s u c c e s s=1
bash−2653 1dNh3 9us+: sched wakeup : task i r q /21−uhc i hcd :580 [4 9] s u c c e s s=1
bash−2653 1dNh3 11 us+: sched wakeup : task i r q /21−eth0 :2333 [4 9] s u c c e s s=1
bash−2653 1 .N. 1 13 us : a t o m i c s p i n u n l o c k i r q r e s t o r e <−t a s k r q u n l o c k
bash−2653 1 .N. 1 13 us : t race preempt on <−t a s k r q u n l o c k

Listing 6: Preemption and Interrupts Off Latency Trace

[root@mxf t r a c i n g]# echo 0 > / proc / sys / ke rne l / f t r a c e e n a b l e d
[root@mxf t r a c i n g]# echo 1 > events / sched / enable
[root@mxf t r a c i n g]# echo wakeup > c u r r e n t t r a c e r
[root@mxf t r a c i n g]# cat t r a c e

t r a c e r : wakeup
#
wakeup la t ency t r a c e v1 . 1 . 5 on 2.6.31− rc6−r t4
−−
latency : 150 us , #7/7, CPU#1 | (M: preempt VP: 0 , KP: 0 , SP : 0 HP: 0 #P: 2)
−−−−−−−−−−−−−−−−−
| task : hald−addon−s tor −2103 (uid : 0 n i c e : 0 p o l i c y : 0 r t p r i o : 0)
−−−−−−−−−−−−−−−−−
#
−−−−−−=> CPU#
/ −−−−−=> i r q s−o f f
| / −−−−=> need−resched
| | / −−−=> hard i rq / s o f t i r q
| | | / −−=> preempt−depth
| | | | /
| | | | | delay
cmd pid | | | | | time | c a l l e r
\ / | | | | | \ | /

<i d l e >−0 1d . h3 0us : 0 : 1 4 0 :R + [0 0 1] 2103 : 120 : S hald−addon−s t o r
<i d l e >−0 1d . h3 1us+: wake up process <−hrtimer wakeup
<i d l e >−0 1dNh3 3us+: sched wakeup : task hald :1952 [1 2 0] s u c c e s s=1
<i d l e >−0 1d . . 3 7us ! : s ched swi tch : task swapper : 0 [1 4 0] (R) ==> hald :1952 [1 2 0]

hald−1952 1d . . 3 149 us : s ched swi tch : task hald :1952 [1 2 0] (D) ==> hald−addon−s t o r :2103 [1 2 0]
hald−1952 1d . . 3 150 us : s c h e d u l e <−schedu le
hald−1952 1d . . 3 151 us : 1952 : 120 : S ==> [0 0 1] 2103 : 120 :R hald−addon−s t o r

Listing 7: Scheduling Latency Trace

[root@mxf t r a c i n g]# echo 0 > / proc / sys / ke rne l / f t r a c e e n a b l e d
[root@mxf t r a c i n g]# echo 1 > events / sched / enable
[root@mxf t r a c i n g]# echo wakeup rt > c u r r e n t t r a c e r
[root@mxf t r a c i n g]# cat t r a c e

t r a c e r : wakeup rt
#
wakeup rt l a t ency t r a c e v1 . 1 . 5 on 2.6.31− rc6
−−
latency : 5 us , #5/5, CPU#0 | (M: preempt VP: 0 , KP: 0 , SP : 0 HP: 0 #P: 2)
−−−−−−−−−−−−−−−−−
| task : migrat ion/0−3 (uid : 0 n i c e :−5 p o l i c y : 1 r t p r i o : 9 9)
−−−−−−−−−−−−−−−−−
#
−−−−−−=> CPU#
/ −−−−−=> i r q s−o f f
| / −−−−=> need−resched
| | / −−−=> hard i rq / s o f t i r q
| | | / −−=> preempt−depth
| | | | /
| | | | | delay
cmd pid | | | | | time | c a l l e r
\ / | | | | | \ | /

bash−6808 0d . . 2 0us : 6808 : 120 :R + [0 0 0] 3 : 0 : S migrat ion /0
bash−6808 0d . . 2 1us+: wake up process <−sched exec
bash−6808 0d . . 3 4us : s ched swi tch : task bash :6808 [1 2 0] (R) ==> migrat ion /0 :3 [0]
bash−6808 0d . . 3 5us : s chedu le <−preempt schedule
bash−6808 0d . . 3 5us : 6808 : 120 :R ==> [0 0 0] 3 : 0 :R migrat ion /0

Listing 8: Scheduling Latency Trace

