Finding Origins of Latencies Using Ftrace

Steven Rostedt
Red Hat, Inc.
1801 Varsity Drive,Raleigh, North Carolina 27606,USA
srostedt@redhat.com

Abstract

One of the difficult tasks analyzing Real-Time systems is finding a source/cause of an unexpected
latency. Is the latency caused by the application or the kernel? Is it a wake up scheduling latency or a
latency caused by interrupts being disabled, or is it a latency caused by preemption being disabled, or a

combination of disabled interrupts and preemption.

Ftrace has its origins from the -rt patch [1] latency tracer, and still carries the capabilities to track
down latencies. It can catch the maximum wake up latency for the highest priority task. This wake up
latency can also be tuned to only trace real-time processes. There is a latency tracer to find the latency
of how long interrupts and/or preemption are disabled. The maximum latency is captured and you can
even see the functions that were called in the mean time. Ftrace also has a rich array of tracing features
that can help determine if latencies are caused by the kernel, or simply are a bi-product of an application.

1 Introduction

Ftrace has its control files in the debugfs system.
This is usually mounted in /sys/kernel/debug. If
it is not already mounted, then you can mount it
yourself with:

mount -t debugfs nodev /sys/kernel/debug
cd /sys/kernel/debug/tracing

1s

available_events
available_filter_functions
available_tracers
buffer_size_kb
current_tracer
dyn_ftrace_total_info

set_ftrace_notrace
set_ftrace_pid
set_graph_function
stack_max_size
stack_trace
sysprof_sample_period

events trace

failures trace_marker
function_profile_enabled trace_options
options trace_pipe

per_cpu trace_stat
printk_formats tracing_cpumask
README tracing_enabled
saved_cmdlines tracing_max_latency
set_event tracing_on

set_ftrace_filter tracing_thresh

As you can tell, there are a lot of files in this
directory. We will only be concerning ourselves with
those that will help us trace latencies in the system.
Those are:

1. available_tracers
2. current_tracer

3. events

4. trace

5. trace_marker

6. trace_max_latency
7. tracing_on

The version of the kernel that I am using for this
paper is 2.6.31-rc6-rt4.

2 Enabling Plugin Tracers

Looking in the file available_tracers, you will
see the available tracers that have been configured.

We are most interested in irgsoff, preemptoff,
preemptirqgsoff, wakeup_rt, and wakeup. To en-
able a plugin, you simply echo the name into the
current_tracer file:

echo preemptoff > current_tracer

All examples in this document will assume that
you have mounted the debugfs directory and changed
directory into the debugfs tracing directory.

You can see the tracer that is activated by cat’ing
the current_tracer file.

cat current_tracer
preemptoff

To disable the plugin, echo the special nop tracer
into the current_tracer file. The nop tracer is spe-
cial in that it is not a plugin tracer, but lets the user
disable all plugins.

echo nop > current_tracer
cat current_tracer
nop

3 Things That Might Cause
Latencies

There are various events that can trigger a latency.
First, lets define what a latency is. A latency is the
time between an event is suppose to occur and when
it actually does. The term latency tracer is really a
misnomer, because the tracing tools do not actually
trace latency, but instead it traces events that may
cause a latency.

Within the kernel, there are basically four differ-
ent events that can cause a latency.

1. Interrupts disabled - keeping interrupts from
calling their handlers when a device triggers
an interrupt to the CPU.

2. Preemption disabled - preventing a process
that just woke up from running.

3. Scheduling latency - the time it takes a process
to schedule in.

4. Interrupt inversion - the time that an interrupt
handler is performing a task that is lower in
priority than the task that it preempted.

Ftrace latency tracers can record the first three.
But the interrupt inversion is not covered by the la-
tency tracer but can be seen with other tracers.

4 Measuring Interrupts Dis-

abled

Ftrace piggy backs on top of lockdep [2] to mea-
sure interrupts disabled. Lockdep is a tool made by
Ingo Molnar that can detect possible deadlock sce-
narios within the kernel. It keeps track of locks that
are taken and can check the order of locks to ensure
that two locks are always taken in the proper or-
der. Lockdep also makes sure that a spinlock that
is used within an interrupt is not taken without dis-
abling interrupts. If you do not understand lockdep,
do not worry, it is beyond the scope of this paper.
What is important, is that lockdep keeps track of all
locations that interrupts are disabled as well as when
they are enabled. Ftrace uses this implementation to
record when interrupts are disabled and enabled.

Note: ftrace hooks into the lockdep infras-
tructure, but you do not need to enable lockdep
to use the interrupt tracer. By enabling lockdep
you will add even more overhead. If you are con-
cerned about measuring latency and not debugging
the locking of the kernel, then it is recommended to
keep lockdep disabled (CONFIG_PROVE_LOCKING and
CONFIG_LOCKDEP).

Measuring the time that interrupts are disabled
in the system is key to for analyzing causes of latency.
If interrupts are disabled when an event occurs, then
that event must wait till interrupts are enabled to
continue. The time it must wait is added latency on
top of the overhead to get to the event. When inter-
rupts are disabled, a device that sends an interrupt
to the CPU will not be noticed until interrupts are
re-enabled.

4.1 Irqgsoff Latency Tracer

The plugin irgsoff is a way to measure times in the
kernel that interrupts are disabled. Listings 1, 2, 3,
and 4 show the output of running irgsoff tracer for
just a little while. As you can see by the fact that I
needed to break this up over 4 pages, it can get a bit
verbose. This is due to the function tracer.

The function tracer (enabled by CONFIG_
FUNCTION_TRACER) is a way to trace almost all func-
tions in the kernel. When function tracing is en-
abled, the kernel is compiled with the gcc option -pg.
This is a profiler that will make all functions call a
special function named mcount. One would realize

that this could cause a very large overhead, but if
the kernel is also configured with dynamic function
tracing (CONFIG_DYNAMIC_FTRACE) then these calls,
when not in use, are converted at run time to nops.
This allows the function tracer to have zero overhead
when not in use. If you do not understand this part,
don’t worry, you do not need to understand the im-
plementation to use it. Just realize that enabling the
dynamic function tracer gives you great power with
no overhead.

4.2 The Heisenberg Principle

Any computer scientist (or any scientist for that mat-
ter) should be aware of the Heisenberg Principle
[3]. Basically this means that the act of measuring
something can and will modify the result. This is es-
pecially true with the interrupt tracer and even more
so when the function tracer is enabled. The idea is to
trace the time interrupts are disabled, but by adding
a tracer to these core functions, it adds a little over-
head. By running with the function tracer, it adds
even more overhead to the time interrupts are dis-
abled, because we are tracing every function that is
called within the critical section.

You do not need to unconfigure the function
tracer to keep it from running while tracing inter-
rupt latency. There exists a proc file that lets you
disable the function tracer from running at run time.

echo 0 > /proc/sys/kernel/ftrace_enabled

This will allow you to find something a bit closer
to the actual latency'. Listing 5 shows the result of
a latency trace with the function tracer disabled.

To get a good idea of the overhead, the bench-
mark test hackbench [4] can show the results well.
Running hackbench with the function tracer enabled
yields a test run time of 47.686 seconds and a max
latency of 171 microseconds (way above the max
that we allow for the real-time kernel). Running
hackbench with the function tracing disabled, yields
a test run of 34.361 seconds and a max latency of 30
microseconds?. Note: running hackbench with both
tracers disabled only took a running time of 9.774
seconds. I do not know the latency because it was
not being traced.

Note: when enabling or disabling the function
tracing for the latency tracers, it is best to reset the
tracer or it may take effect. That is, echo in nop into
the current_tracer file and irgsoff again.

5 Reading the Trace

Before we continue to the other tracers, a descrip-
tion of how to read the output is in order. The lines
in the Listings of 1, 2, 3 and 4 are numbered. We
will go through some of the lines and explain their
meanings.

Lines 001 through 018 is the latency tracer
header, and is annotated with a ’#’ at the begin-
ning of the line. Line 001 states the name of the
current plugin tracer. Line 003 has the kernel ver-
sion that is executing (ignore the trace version, that
has not changed in a long time). Line 005 has a bit
of information. Here we see that the latency trace
recorded a 70 microsecond time that interrupts were
disabled. This may be different than the last trace
entry, but not by much, due to the tracer writing
entries after it took the finishing time stamp. The
#170/170 means that there was 170 entries printed
out of 170 that were recorded. Since the latency
trace ftrace plugins are usually small® the two num-
bers should always match. But for other tracers, it is
quite possible to have the first number smaller than
the second due to the trace ring buffer overwriting
older data.

The CPU#0 shows that this latency happened
on CPU 0. Inside the parenthesis, the VP, KP,
SP and HP will always be zero since they are not
yet implemented. The M element shows what type
of preemption the kernel was configured at. Here
it is “preempt” but really should be “preempt-rt”.
Since the latency tracer has been replaced with the
upstream ftrace, this field has not been updated.
The other selections of preempt type are “desk-
top” for CONFIG_ PREEMPT_VOLUNTARY (ker-
nel preempts only at preemption points) or “server”
for CONFIG_.PREEMPT_NONE (no preemption in-
side the kernel). The #P:2 shows that there were 2
online CPUS active.

Line 007 shows information about the task
that was executing when the latency was recorded.
The task here was “sirqtimer/0” with process id
5. The policy shows that it was running un-
der SCHED_FIFO (1) where as 0 would be a
non real-time running the SCHED_NORMAL policy.
SCHED_RR is represented with 2, SCHED_BATCH
is 3, and SCHED_IDLE is 5. Because this is run-
ning under a real-time policy, the nice value can be
ignored. The rt_prio field is the real-time prio as

INote: you must have a space between the 0 and the > otherwise the shell will interpret it as a redirection of standard 1/0.

2hackbench did not even get on the radar in this run

3170 is small compared to thousands that the function tracer can do.

maintained in the kernel. This can be a little con-
fusing. Real time priorities for users range from 1 to
99, but these are represented in the kernel as 98 to 0,
where the lower the number, the higher the priority.
The trace shows the priority to be 49, but that is
the kernel’s representation. To convert the rt_prio
to the user priority, subtract it from 99. The user
priority of this task is actually 50.

The trace_hardirqs_off_thunk is a helper
function called from assembly to trace when inter-
rupts are disabled there, usually by entering of an
interrupt. When an interrupt occurs, interrupts are
disabled. Looking at the first function called on line
020 we can see the APIC timer interrupt went off.

Line 020 starts off with the cmd (the kernel
name of the task) and the process id. The task
at this recording is bash and its process id is
2724. Even though the trace header shows the
task was sirgq-timer a schedule switch happened
inside this disabling of interrupts and ending task
was sirq-timer. The next five items are labeled in
the header. The first is the CPU number. The sec-
ond is whether interrupts were disabled. A d means
that interrupts are disabled. In the irgs off trace, all
lines should show that interrupts are disabled. When
interrupts are enabled a period (.) will be displayed.

The third item is for need-resched. When the
kernel determines that a schedule should take place
because a higher priority task woke up or the current
running task is at the end of its time slice, it sets a
need-resched flag to signal that a schedule should
take place. The trace will annotate this with a IN
in that field. Line 093 shows this being set when we
wake up the sirg-timer task that is of higher pri-
ority than the bash task. When the need-resched
flag is not set, a period (.) is displayed.

The forth item denotes if we are in a hard inter-
rupt or soft interrupt. The soft interrupt is a little
misnomer because it really only denotes soft inter-
rupts are disabled. Soft interrupts are disabled when
ever the kernel is running a soft interrupt, as one
soft interrupt can not preempt another. A h means
that the trace was recorded in an interrupt. A s de-
notes that soft interrupts are disabled or the trace
was recording inside a soft interrupt. A H denotes
that the trace was recorded in an interrupt and soft
interrupts are also disabled. Since the Real-Time
Linux kernel runs the soft interrupts as threads, the
soft interrupt disabling is not applicable. When hard
and soft interrupts are enabled, a period (.) is dis-
played.

The fifth item denotes the preempt disable

4In this case we can see spin locks disable preemption

depth. When a kernel disables preemption in crit-
ical sections?, it uses a preempt counter. The pre-
empt count is recorded in all traces, and this field
shows the value when it is greater than zero. When
preemption is enabled, this field will contain a pe-
riod (.). Line 041 shows a preempt depth of 1 that
was caused by the _atomic_spin_lock just before
it. Line 046 shows a preempt depth of 2 caused by
the _atomic_spin_lock_irgsave before it.

Lines 181 and 182 shows the schedule switch that
took place between the tasks bash and sirqg-timer.
Only the first 8 characters of the task name are
printed, as can be seen by the truncated name of
the task sirq-timer.

6 Preemption Disabled Trac-
ing

When interrupts are disabled, events from devices
and timers and even inter-processor communication
is disabled. But the kernel can keep interrupts en-
abled but disable preemption. This allows devices
and timers to be able to notify the CPU that an
event has happened, but if a task should wake up
because of it, it must wait till the kernel comes to
a place it can preempt before it will schedule. The
preemptoff plugin tracer will trace the maximum
time that preemption is disabled.

Measuring the time preemption is disabled may
be something used for academics, but it has really no
practical meaning by itself. Being able to trace the
time that both interrupts are disabled and/or pre-
emption is disabled is much more informative. This
is the total time that a task can not be scheduled. If
interrupts are disabled, no event can occur to cause
a preemption. The scheduler will not be called if
preemption is enabled but interrupts are not. The
preemptirgsoff plugin tracer shows this informa-
tion.

[root@mxf tracingl# echo preemptirgsoff > current_tracer

The output for this trace is not much different
than the output of the irgsoff trace so I will omit
it from this paper.

7 Using the Event Tracer

Since the function tracing can add a large overhead
it is not always practical to use it. But without the

function tracing enabled, the information may not
be enough to see what is happening. Luckily, there
is the event tracer. The event tracing is not a plu-
gin. When events are enabled, they will be recorded
in any plugin, including the special nop plugin.

There are two ways to enable events. One is with
the set_event file and the other is with the events
directory. The set_event file is a way to echo in
events to enable them. The available events are:

[root@mxf tracingl# cat available_events
skb:kfree_skb
block:block_rqg_abort
block:block_rqg_insert
block:block_rqg_issue
block:block_rq_requeue
block:block_rq_complete
block:block_bio_bounce
block:block_bio_complete
block:block_bio_backmerge
block:block_bio_frontmerge
block:block_bio_queue
block:block_getrq
block:block_sleeprq
block:block_plug
block:block_unplug_timer
block:block_unplug_io
block:block_split
block:block_remap
kmem:kmalloc
kmem:kmem_cache_alloc
kmem:kmalloc_node
kmem:kmem_cache_alloc_node
kmem:kfree
kmem:kmem_cache_free
lockdep:lock_acquire
lockdep:lock_release
workqueue:workqueue_insertion
workqueue:workqueue_execution
workqueue:workqueue_creation
workqueue:workqueue_destruction
irq:irqg_handler_entry
irq:irq_handler_exit
irq:softirq_entry
irqg:softirq_exit
sched:sched_kthread_stop
sched:sched_kthread_stop_ret
sched:sched_wait_task
sched:sched_wakeup
sched:sched_wakeup_new
sched:sched_switch
sched:sched_migrate_task
sched:sched_process_free
sched:sched_process_exit
sched:sched_task_setprio
sched:sched_process_wait
sched:sched_process_fork
sched:sched_signal_send

The name before the colon is the system that the
event is under. The event name is after the colon®.
By echoing in the system name you will enable all
the events in that system.

[root@mxf tracing]# echo irq > set_event
[root@mxf tracingl# cat set_event
irq:irq_handler_entry
irq:irq_handler_exit

irq:softirq_entry

irq:softirq_exit

Echoing in just the event name will enable the
event as well. But if there are two event names un-
der two systems that are identical, then both will be
enabled. Currently no two event names are identical.

Adding new names follows shell concatenation
rules. Using a '>’ will truncate the file and disable
the events that were previously enabled. Using a
’>>" will add new events without disabling the ones
that are currently enabled.

[root@mxf tracing]# echo sched_switch >> set_event
[root@mxf tracingl# cat set_event
irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_entry

irq:softirq_exit

sched:sched_switch

The ’!" character can be used to remove events.
Note that this is also a bash command so it must be
added in quotes.

[root@mxf tracing]# echo ’!softirq_entry’ >> set_event
[root@mxf tracing]# cat set_event
irq:irq_handler_entry

irq:irq_handler_exit

irq:softirq_exit

sched:sched_switch

The events directory is also useful. The direc-
tory structure is made of the event systems, and
within each system directory is the events. Each level
has an enable file.

[root@mxf tracingl# ls events/

block ftrace header_page kmem
workqueue enable header_event irq
[root@mxf tracingl# 1ls events/irq

enable irqg_handler_entry softirg_entry
filter irq_handler_exit softirq_exit
[root@mxf tracingl# ls events/irq/softirq_exit/
enable filter format id

sched
lockdep skb

5The kernel T have has lockdep enabled where you can see from the lockdep events

To enable all events echo 1 into events/enable.
To enable all events within a system, echo 1 into the
system enable file (events/irq/enable). To enable
just a single event, echo 1 into the enable file for that
event (events/irq/softirq_entry/enable). Echo-
ing in a 0 will disable the same events that a 1 would
enable.

Just enabling the scheduling events yields a nice
useful output, as seen in Listing 6.

8 Tracing Scheduling Latencies

The time a task is awoken to the time it is sched-
uled is considered the scheduling latency. Two plugin
tracers exist to measure this latency. The wakeup
plugin will consider all tasks and the wakeup_rt will
only consider real-time tasks to trace. Both of these
plugins only trace the current highest priority task of
the system. The trace records the max latency, and
tracing anything but the highest priority task would
lose the trace for the highest task, because the high-
est task may cause a lower priority task to take a
long time to be scheduled.

If you are concerned about the wake up times of
all tasks, simply enable all the scheduling events and
examine the trace with the nop plugin.

Listing 7 shows the output of the wakeup plugin.
Notice that the time is quite exaggerated. This is be-
cause of the way the wakeup tracer works. The tracer
picks the highest priority task that has started. If it
wakes up another task of equal priority it does not
switch the trace to that task. Although we see that
our wake up latency was 150 microseconds, the true
wake up was only 7 microseconds. What happened
was after the highest priority task hald-addon-stor
with pid 2103 was woken up, we see that the task
hald with pid 1952 was woken up afterwards. But
since the two tasks have the same priority, the tracer
did not switch over to test the wake up time of the
second task. The scheduler chose the second task
(hald) first, and the trace included the entire time
that the task hald ran. Luckily it only ran for 142
microseconds.

If we chose not to enable the scheduling events
we would not have seen the hald task wake up and
we would assume that the true scheduling latency
was 150 microseconds.

The wakeup_rt plugin only records real-time
tasks. The tracer only records the maximum trace

which makes the wakeup plugin hide real-time tasks
latencies. If it constantly records the long latency
that is described above, then we will never see the
latencies of real-time tasks that we care about. This
is why there are two plugins to record scheduling la-
tencies. Listing 8 shows the output of the wakeup_rt
plugin.

The values in the scheduling events needs a little
explanation. The first trace item (which is from the
wakeup_rt tracer) shows that task with pid 6808 at
priority 120°. The R means that it is in the running
state”. The 4+ denotes that it is waking up the task
that follows. The task that is being woken up is the
migration/0 task with the pid of 3. It’s priority is
zero which is the highest priority Linux supports (99
- 0 = 99 user level priority). The migration/0 task
is in the sleep state denoted by the S. The number
inside the brackets ([000]) is the CPU that the task
that is being woken up on is assigned to. The task
may migrate before it wakes up.

The third trace item is a scheduling event (de-
noted with the sched_switch:). This even is the
scheduling context switch between the current run-
ning task (bash) and the task that was just woken
up (migration/0). This time the first number in the
bracket ([120]) is the priority of the current task
with the state of the task in parenthesis ((R)). The
“==>" also denotes a scheduling switch is occurring,
followed by the task that is scheduling, its pid and
in brackets, its priority ([0]).

The third and last events are pretty much iden-
tical. The third event came from enabling the
scheduling events, and the last event is part of the
wakeup_rt plugin tracer.

9 Adding Placeholders into the
Trace

When you discover that there exists an unexpected
latency in your system and none of the latency plu-
gin tracers showed anything, then you may need to
confirm that the issue may be with something in
userspace. Assuming that you have access to the
source code of the application, you can make have
the application write into the tracer ring buffer.

Just enabling the events (for now we’ll enable
the sched and irq events) and running with the nop
tracer, you can watch what is happening with your
application.

6This is the kernel internal priority. Anything over 100 is a nice value. Here it is 120 - 20 = nice value of zero

"This field holds the same enumerations that top uses.

Two particular files are of importance.

1. tracing_.on - Enabling and disabling the
tracer.

2. trace_marker - Writing into the trace buffer.

Since the tracing facility uses a ring buffer that
overwrites older data with newer data, it is not im-
portant to enabled the trace, but instead let it con-
stantly run. When you hit a point where you detect
a latency is when you want to disable it. Having a
file descriptor opened to both of the above files lets
you see what is happening inside the application as
well as stop tracing as soon as a latency is detected.
Stopping the trace as soon as it happens is critical
since you do not want to overwrite the trace that
recorded the latency, as well as it will be easier to
find the trouble area if it is relatively close to the
end of the trace.

[root@mxf tracingl# echo Hello Dresden > trace_marker
[root@mxf tracingl# cat trace
tracer: nop

#
TASK-PID CPU# TIMESTAMP FUNCTION
[| | |
bash-2702 [001] 8934.777334: 0: Hello Dresden

Inside the application, you can add comments to
the trace at particular points and use them as mark-
ers to what is happening in the kernel.

write(trace_mark_fd, "hit this point\n", 15);

When you detect a latency inside the application
you can stop the trace by writing the ASCII charac-
ter '0’ (zero) to the tracing_on file.

/* Detected latency, stop the trace */
write(tracing_on_fd, "O", 1);

Using this in combination with the event tracers
(or even the full function tracer) will help tremen-
dously with finding latency problems in your appli-
cation.

There is another plugin that is useful with the
above: The syscall plugin. This is similar to the

strace tool but it traces all programs, not just one.
The output ends up in the trace. Mixing the syscall
plugin along with the event tracing will give lots of
useful information to pin point trouble areas in you
application.

10 Conclusions

During the early development of the -rt patch, some
of our first testers were from audio users. People us-
ing the jack [5] utility to record music. They found
the -rt patch gave the minimum latencies to record
without defects. But every so often, they would come
across something that would exceed the minimum
latency, and would complain to us. Using the early
latency_tracer we were able to find bugs in the ker-
nel that caused their latencies and fixed them. But
there were times that the latency_tracer proved
that the latency was not in the kernel, and with fur-
ther investigation, bugs in the jack utility were being
discovered.

When your application fails to meet a deadline,
it can happen due to several issues: hardware, la-
tency in the kernel, or a bug in the application it-
self. When you discover something has gone wrong,
the next step is to find what and where the problem
arises. Having a good set of tracing utilities at your
disposal will facilitate solving these issues.

References

[1] RT Patchhttp://www.kernel.org/pub/
linux/kernel/projects/rt/, http:
//rt .wiki.kernel.org/index.php/Main_Page

[2] lockdep, Ingo Molnar, See Documentation/
lockdep-design.txt in the Linux kernel source.

[3] Heisenberg Principle, http://en.wikipedia.
org/wiki/Uncertainty_principle

[4] hackbench, Rusty Russell, http://
devresources.linux-foundation.org/
craiger/hackbench/src/hackbench.c

[5] JackAudio, http://jackaudio.org/

001: # tracer: irqsoff

002: #

003: # irgqsoff latency trace v1.1.5 on 2.6.31—rc6—rt4

004: #

005: # latency: 70 us, #170/170, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
006: #

007: # | task: sirq—timer/0—5 (uid:0 nice:—5 policy:1 rt_prio:49)

008: #

009: #

010: # ——=> CPU#

011: # / - => irqs—off

012: # | / -——=> need—resched

013: # || / -—=> hardirq/softirq

014: # || / -—=> preempt—depth

015: # i/

016: # RN delay

017: # comd pid [1]]] time | caller

018 # \/ I

019: bash —2724 0od... lus : trace_hardirgs_off_thunk <—save_args

020: bash —2724 od... lus : smp_apic_timer_interrupt <—apic_timer_interrupt
021: bash —2724 od... 2us : apic_write <—smp_apic_timer_interrupt

022: bash —2724 0od... 2us : native_apic_mem_write <—apic_write

023: bash —2724 od... 2us : exit_idle <—smp_apic_timer_interrupt

024: bash —2724 od... Jus : irq-enter <—smp_apic_timer_interrupt

025: bash —2724 od... Jus : rcu-irq-enter <—irq-enter

026: bash —2724 od... 4us : idle_cpu <—irq-enter

027: bash —2724 0d.h. 4us : hrtimer_interrupt <—smp_apic_timer_interrupt
028: bash —2724 0d.h. 5us : ktime_get <—hrtimer_interrupt

029: bash —2724 0d.h. 5us : clocksource_read <—ktime_get

030: bash —2724 0d.h. 5us : _atomic_spin_lock <—hrtimer_interrupt

031: bash —2724 0d.h1 6us : hrtimer_rt_defer <—hrtimer_interrupt

032: bash —2724 0d.h1l 6us : __run_hrtimer <—hrtimer_interrupt

033: bash —2724 0d.h1l 7Tus : __remove_hrtimer <—__run_hrtimer

034: bash —2724 0d.h1 7us : timer_stats_account_hrtimer <—__run_hrtimer
035: bash —2724 0d.hl 7us : _atomic_spin_unlock <—__run_hrtimer

036: bash —2724 0d.h. 8us : tick_sched_timer <—__run_hrtimer

037: bash —2724 0d.h. 8us : ktime_get <—tick_sched_timer

038: bash —2724 0d.h. 8us : clocksource_read <—ktime_get

039: bash —2724 0d.h. 9us : tick_do_update_jiffies64 <—tick_sched_timer
040: bash —2724 0d.h. 9us : _atomic_spin_lock <—tick_do_update_jiffies64
041: bash —2724 0d.hl 10us : do-timer <—tick_do_update_jiffies64

042: bash —2724 0d.h1l 10us : update_wall_time <—do_timer

043: bash —2724 0d.h1 10us : clocksource_read <—update_wall_time

044: bash —2724 0d.h1l 1lus : clocksource_get_next <—update_wall_time
045: bash —2724 0d.h1l 1lus : _atomic_spin_lock_irqsave <—clocksource_get_next
046: bash —2724 0d.h2 12us : _atomic_spin_unlock_irqrestore <—clocksource_get_next
047: bash —2724 0d.hl 12us : update_vsyscall <—update_wall_time

048: bash —2724 0d.h1l 13us : _atomic_spin_lock <—update_vsyscall

049: bash —2724 0d.h2 13us : _atomic_spin_-unlock <—update_vsyscall

050: bash —2724 0d.hl 14us : calc_global_load <—do_timer

051: bash —2724 0d.hl 14us : _atomic_spin_unlock <—tick_do_update_jiffies64
052: bash —2724 0d.h. l4us : update_process_times <—tick_sched_timer
053: bash —2724 0d.h. 15us : account_process_tick <—update_process_times
054: bash —2724 0d.h. 15us : account_system_time <—account_process_tick
055: bash —2724 0d.h. 16us : cpuacct_update_stats <—account_system_time
056: bash —2724 0d.h. 16us : __rcu_read_lock <—cpuacct_update_stats

057: bash —2724 0d.h. 17us : __rcu-read_unlock <—cpuacct_update_stats
058: bash —2724 0d.h. 17us : acct_-update_integrals <—account_system_time
059: bash —2724 0d.h. 18us : jiffies_to_timeval <—acct_update_integrals
060: bash —2724 0d.h. 18us : run_local_timers <—update_process_times
061: bash —2724 0d.h. 18us : hrtimer_run_queues <—run_local_timers

Listing 1: Interrupts Off Latency Trace (Part 1)

062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:

bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724
bash —2724

0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.
0d.

h1

0dNh1
0dNh1
0dNh1
0dNh1
0dNh1
0dNh.
0dNh.
0dNh.
0dNh.
0dNh.
0dNh.
0dNh.
0dNh.
0dNh.
0dNh1
0dNh1
0dNh1
0dNh1
0dNh1
0dNh1

Listing 2: Interrupts Off Latency Trace (Part 2)

19us
19us
19us
20us
20us
21us
21us
21us
22us
22us
23us
23us
23us
24 us
24us
25us
25us
26us
26us
27us
27us
28us
28 us
28us
29us
29us
30us
30us
30us
31lus
31lus
32us
32us
32us
33us
33us
33us
34 us
34us
35us
35us
36us
36us
36us
37us
37us
37us
38us
38us
39us
39us

raise_softirq <—run_local_timers
raise_softirq_irqoff <—raise_softirq
wakeup_softirqd <—raise_softirq_irqoff
wake_up_process <—wakeup_softirqd
try_to_wake_up <—wake_up_process
task_rq_lock <—try_to_wake_up
_atomic_spin_lock <—task_rq-lock
update_rq_clock <—try_to_wake_up
select_task_rq_rt <—try_to_wake_up
activate_task <—try_-to_wake_up

enqueue_task <—activate_task
enqueue_task_rt <—enqueue_task
enqueue_rt_entity <—enqueue_task_rt
__enqueue_rt_entity <—enqueue_rt_entity
cpupri-set <—__enqueue_rt_entity
_atomic_spin_lock_irqsave <—cpupri-set
_atomic_spin_unlock_irqrestore <—cpupri_set
_atomic_spin_lock_irqsave <—cpupri-set
_atomic_spin_unlock_irqrestore <—cpupri-set
update_rt_migration <—__enqueue_rt_entity
check_preempt_curr <—try_-to_wake_up
check_preempt_wakeup <—check_preempt_curr
update_curr <—check_preempt_wakeup
calc_delta_fair <—update_curr
cpuacct_charge <—update_curr
_.rcu_read_lock <—cpuacct_charge
__rcu-read_unlock <—cpuacct_charge
account_group_exec_runtime <—update_curr
resched_task <—check_preempt_wakeup
test_tsk_need_resched <—resched_task
test_ti_thread_flag <—test_tsk_need_resched
task_wake_up._rt <—try_to_wake_up
test_tsk_need_resched <—task_wake_up_rt
test_ti_thread_flag <—test_tsk_need_resched
task_rq_unlock <—try_to_wake_up
_atomic_spin_unlock_irqrestore <—task_rq_-unlock
preempt_schedule <—_atomic_spin_unlock_irqrestore
softlockup_tick <—run_local_timers
__touch_softlockup_-watchdog <—softlockup-tick
rcu_pending <—update_process_times
rcu_check_callbacks <—update_process_times
idle_cpu <—rcu_check_callbacks

rcu_try_flip <—rcu_check_callbacks
rcupreempt_trace_try_flip_.1 <—rcu_try_flip
_atomic_spin_trylock <—rcu_try_flip
rcupreempt_trace_try_flip.al <—rcu_-try_flip
cpumask_next <—rcu_try_flip

cpumask_next <—rcu_try_flip

cpumask_next <—rcu_try_flip
rcupreempt_trace_try_flip_a2 <—rcu_try_flip
_atomic_spin_unlock_irqrestore <—rcu_-try_flip

113: bash —2724 0dNh. 40us : preempt-schedule <—_atomic_spin_unlock_irqrestore

114: bash —2724 0dNh. 40us : _atomic_spin_lock_irqsave <—rcu_check_callbacks
115: bash —2724 0dNh1 40us : rcupreempt_trace_check_callbacks <—rcu_check_callbacks
116: bash —2724 0dNh1 41us : __rcu-advance_callbacks <—rcu_check_callbacks
117: bash —2724 0dNh1 41us : _atomic_spin_unlock_irqrestore <—rcu_check_callbacks
118: bash —2724 0dNh. 42us : preempt_schedule <—_atomic_spin_unlock_irqrestore
119: bash —2724 0dNh. 42us : scheduler_tick <—update_process_times

120: bash —2724 0dNh. 42us : ktime_get <—sched_clock_tick

121: bash —2724 0dNh. 43us : clocksource_read <—ktime_get

122: bash —2724 0dNh. 43us : _atomic_spin_lock <—scheduler_tick

123: bash —2724 0dNh1 44us : update_rq_clock <—scheduler_tick

124: bash —2724 0dNh1 44us : task_tick_fair <—scheduler_tick

125: bash —2724 0dNh1 44us : update_curr <—task_tick_fair

126: bash —2724 0dNh1 45us : calc_delta_fair <—update_curr

127: bash —2724 0dNh1 45us : cpuacct_charge <—update_curr

128: bash —2724 0dNh1 45us : __rcu-read_lock <—cpuacct_charge

129: bash —2724 0dNh1 46us : __rcu.read_unlock <—cpuacct_charge

130: bash —2724 0dNh1 46us : account_group_exec_runtime <—update_curr

131: bash —2724 0dNh1 47us : _atomic_spin_unlock <—scheduler_tick

132: bash —2724 0dNh. 48us : preempt_schedule <—_atomic_spin_unlock

133: bash —2724 0dNh. 48us : perf_counter_task_tick <—scheduler_tick

134: bash —2724 0dNh. 48us : find_new_ilb <—scheduler_tick

135: bash —2724 0dNh. 49us : cpumask_first <—find_new_ilb

136: bash —2724 0dNh. 49us : resched_cpu <—scheduler_tick

137: bash —2724 0dNh. 49us : _atomic_spin_trylock <—resched_cpu

138: bash —2724 0dNh1 50us : resched_task <—resched_cpu

139: bash —2724 0dNh1 50us : test_tsk_need_resched <—resched_task

140: bash —2724 0dNh1 5lus : test_ti_thread_flag <—test_tsk_need_resched
141: bash —2724 0dNh1 5lus : _atomic_spin_unlock_irqrestore <—resched_cpu
142: bash —2724 0dNh. 52us : preempt_schedule <—_atomic_spin_unlock_irqrestore
143: bash —2724 0dNh. 52us : run_posix_cpu-timers <—update_process_times
144: bash —2724 0dNh. 52us : profile_tick <—tick_sched_timer

145: bash —2724 0dNh. 53us : hrtimer_forward <—tick_sched_timer

146: bash —2724 0dNh. 53us : _atomic_spin_lock <—__run_hrtimer

147: bash —2724 0dNh1 54us : enqueue_hrtimer <—__run_hrtimer

148: bash —2724 0dNh1 54us : _atomic_spin_unlock <—hrtimer_interrupt

149: bash —2724 0dNh. 55us : preempt_schedule <—_atomic_spin_unlock

150: bash —2724 0dNh. 55us : tick_program_event <—hrtimer_interrupt

151: bash —2724 0dNh. 55us : tick_dev_program_event <—tick_program_event
152: bash —2724 0dNh. 56us : ktime_get <—tick_dev_program_event

153: bash —2724 0dNh. 56us : clocksource_read <—ktime_get

154: bash —2724 0dNh. 56us : clockevents_program_event <—tick_dev_program_event
155: bash —2724 0dNh. 57us : lapic_next_event <—clockevents_program_event
156: bash —2724 0dNh. 57us : apic_write <—lapic_next_event

157: bash —2724 0dNh. 57us : native_apic_mem_write <—apic_write

158: bash —2724 0dNh. 58us : irq-exit <—smp_apic_timer_interrupt

159: bash —2724 0dN.1 58us : do_softirq <—irq_exit

160: bash —2724 0dN.1 59us : __do.softirq <—call_softirq

161: bash —2724 0dN.1 59us : wakeup_softirqd <—__do_softirq

162: bash —2724 0dN.1 59us : rcu.irq-exit <—irq-exit

163: bash —2724 0dN.1 60us : idle_cpu <—irq-exit

164: bash —2724 0dN .. 60us : preempt-schedule_irq <—retint_kernel

Listing 3: Interrupts Off Latency Trace (Part 3)

165: bash —2724 0dN .. 61us __schedule <—preempt_schedule_irq
166: bash —2724 0dN.. 61us rcu_gsctr_inc <—__schedule
167: bash —2724 0dN.1 62us _atomic_spin_lock_irq <—__schedule
168: bash —2724 0dN.2 62us update_rq_clock <—__schedule
169: bash —2724 0d..2 63us put_prev_task_fair <—__schedule
170: bash —2724 0d..2 63us update_curr <—put_prev_task_fair
171: bash —2724 0d..2 63us calc_delta_fair <—update_curr
172: bash —2724 0d..2 64us cpuacct_charge <—update_curr
173: bash —2724 0d..2 64us _.rcu_-read_lock <—cpuacct_charge
174: bash —2724 0d..2 65us __rcu_read_unlock <—cpuacct_charge
175: bash —2724 0d..2 65us account_group_exec_runtime <—update_curr
176: bash —2724 0d..2 65us __enqueue_entity <—put_prev_task_fair
177: bash —2724 0d..2 66 us pick_next_task <—__schedule
178: bash —2724 0d..2 66 us pick_next_task_rt <—pick_next_task
179: bash —2724 0d..2 66us dequeue_pushable_task <—pick_next_task._rt
180: bash —2724 0d..2 67us perf_counter_task_sched_out <—__schedule
181: bash —2724 0d..2 68us __unlazy_fpu <—__switch_to
182: sirq—tim—5 0d..2 68us finish_task_switch <—thread_return
183: sirq—tim—5 0d..2 68 us needs_post_schedule_rt <—finish_task_switch
184: sirq—tim—5 0d..2 69us perf_counter_task_sched_in <—finish_task_switch
185: sirq—tim—5 0d..2 69us _atomic_spin_unlock <—finish_task_switch
186: sirq—tim—>5 0od... 70us trace_hardirgs_on <—schedule
187: sirq—tim—5 od... 70us : time_hardirgs_on <—schedule
Listing 4: Interrupts Off Latency Trace (Part 4)
[root@mxf tracing]# echo 0 > /proc/sys/kernel/ftrace_enabled
[root@mxf{ tracing]# echo irqsoff > current_tracer
[root@mxf tracing|# cat tracing_-max_latency
19
[root@mxf{ tracing]# cat trace
tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 2.6.31—rc6—rt4
#
latency: 19 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
#
| task: gnome—settings ——2669 (uid:42 nice:0 policy:0 rt_prio:0)
#
#
= CPU#
/ -—=> irqs—off
| / .——=> need—resched
|| / -——=> hardirq/softirq
||| / -—=> preempt—depth
T/
LT delay
cmd pid [11]] time caller
\ o/ R Y
gnome—se —2669 od... 2us+: trace_hardirgs_off_thunk <—save_args
gnome—se —2669 0dN 19us trace_hardirgs_on_thunk <—retint_check
gnome—se —2669 0dN. 20us time_hardirqs_on <—retint_check

Listing 5: Interrupts Off Latency Trace (No Functions)

FHHFHRHRHHFFFFEFFEFEEERFRFT

root@mxf tracing|# echo 0 > /proc/sys/kernel/ftrace_enabled
root@mxf tracing]# echo 1 > events/sched/enable
|#

root@mxf tracing echo preemptirqsoff > current_tracer
root@mxf tracing]# cat trace
tracer: preemptirqgsoff
preemptirgsoff latency trace v1.1.5 on 2.6.31—rc6—rt4
latency: 12 us, #6/6, CPU#l | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
| task: bash—2653 (uid:0 nice:0 policy:0 rt_prio:0)
_—=> CPU#
/ - => irgs—off
| / -——=> need—resched
|| / -—=> hardirq/softirq
||| / -—=> preempt—depth
T/
LT delay
cmd pid [11]] time | caller
\ o/ LI N
bash —2653 1d. .. lus+: trace_hardirqgs_off <—task_rq_lock

bash —2653 1d..2 3us+: sched_wakeup: task sshd:2650 [120] success=1

bash —2653 1dNh3 9us+: sched_wakeup: task irq/2l—uhci_hcd:580 [49] success=1
bash —2653 1dNh3 1lus+: sched_wakeup: task irq/21—eth0:2333 [49] success=1
bash —2653 1.N.1 13us : _atomic_spin_unlock_irqrestore <—task_rq_unlock

bash —2653 1.N.1 13us : trace_preempt_on <—task_rq-unlock

Listing 6: Preemption and Interrupts Off Latency Trace

root@mxf tracing]
root@mxf tracing]
root@mxf tracing]
root@mxf tracing]

echo 0 > /proc/sys/kernel/ftrace_enabled
echo 1 > events/sched/enable

echo wakeup > current_tracer

cat trace

FHFEHRHRHHFFFFFFEERRF

tracer: wakeup
wakeup latency trace v1.1.5 on 2.6.31 —rc6—rt4
latency: 150 us, #7/7, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
| task: hald—addon—stor —2103 (uid:0 nice:0 policy:0 rt_prio:0)
_—=> CPU#
/ -——=> irgqs—off
| / -——=> need—resched
|| / -—=> hardirq/softirq
||| / -—=> preempt—depth
[/
[T delay
cmd pid [1]]] time | caller
\ o/ RN U B
<idle>—0 1d.h3 Ous : 0:140:R + [001] 2103:120:S hald—addon—stor
<idle>-0 1d.h3 lus+: wake_up_process <—hrtimer_wakeup
<idle >-0 1dNh3 3us+: sched_wakeup: task hald:1952 [120] success=1
<idle>—0 1d..3 Tus!: sched_switch: task swapper:0 [140] (R) => hald:1952 [120]
hald —1952 1d..3 149us : sched_switch: task hald:1952 [120] (D) => hald—addon—stor:2103 |
hald —1952 1d..3 150us : __schedule <—schedule
hald —1952 1d..3 151us : 1952:120:S => [001] 2103:120:R hald—addon—stor

Listing 7: Scheduling Latency Trace

root@mxf tracing|# echo 0 > /proc/sys/kernel/ftrace_enabled
root@mxf tracing]# echo 1 > events/sched/enable

root@mxf tracing|# echo wakeup_rt > current_tracer
root@mxf tracing|# cat trace

tracer: wakeup.rt

wakeup_rt latency trace v1.1.5 on 2.6.31—rc6

latency: 5 us, #5/5, CPUA0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)

| task: migration/0—3 (uid:0 nice:—5 policy:1 rt_prio:99)

_—=> CPU#
/ -—=> irqs—off
| / -——=> need—resched
| / -—=> hardirq/softirq
| / _—=> preempt—depth

delay
time | caller
A B
Ous : 6808:120:R + [000] 3: 0:S migration/0
lus+: wake_up_process <—sched_exec
4us : sched_switch: task bash:6808 [120] (R) ==> migration/0:3 [0]
5us : schedule <—preempt_schedule
S5us : 6808:120:R => [000] 3: 0:R migration/0

Listing 8: Scheduling Latency Trace

|
|
|
|
cmd pid |
N\ |
bash —6808 0
bash —6808 0d..
bash —6808 0d..
bash —6808 0od..
bash —6808 0d..

FHFHR R HFFFFFFFEEERHRF

WWwND N———

