
Efficient embedded software development using QEMU

Pradyumna Sampath
ABB Corporate Research

Bhoruka Tech Park, 5th Floor, Block 1,

Whitefield Road, Mahadevapura,

Bangalore, Karnataka, India

pradyumna.sampath@in.abb.com

Rachana Rao
ABB Corporate Research

Bhoruka Tech Park, 5th Floor, Block 1,

Whitefield Road, Mahadevapura,

Bangalore, Karnataka, India

rachana.rao@in.abb.com

Abstract

Software based processor emulators have been around for a long time and predominantly used by

developers of Operating Systems. With virtualization technology becoming more common and gaining

in-processor support, these emulators have expanded to support several processor architectures and a

richer feature set. Consequently, popular operating systems such as Linux have been adapted to run

within virtual environments seamlessly. As part of the software development process, this virtualization

technology has huge potential to increase product quality and developer efficiency.

This paper looks at employing virtualization for in-house real-time application software development

through QEMU, a popular open source emulator. It also details the process of establishing such an

environment and looks at some of the advantages of such a development model for embedded systems.

1 Introduction

Industrial Automation and Power technologies are
characterized by extremely complex software sys-
tems which are in many cases very tightly coupled
with mechanical and electrical sub-systems. These
systems tend to be safety and mission critical. De-
velopment of such systems is considerably time con-
suming. However, they are also charecterized by
long if not very long product lifecycles sometimes in
the order of fifteen years. The scope and complexity
of software components in these industrial products
has gone up significantly over the years. Continu-
ous remodeling and development of software for the
enduring industrial automation systems, places con-
siderable challenges of efficiency on the development
environment and processes followed. This paper at-
tempts to look at acceleration of embedded software

development by decoupling it from the underlying
hardware.

Traditionally, embedded software development
is inherently dependent on hardware availibility.
Hardware development includes design, simulation
and testing of hardware architecture, logic, circuit
schematics and finally the PCB. This is a very time-
consuming process, often iterative and unpredictable
due to dependency on factors like component avail-
ability and vendor support. Software developers
usually cannot afford to wait for the entire hardware
design to be completed and the board to arrive on
their desks before starting on application develop-
ment. This would increase the product development
time substantially which is unacceptable. Appli-
cation development as well as verification(testing)
should be well underway by the time the hardware



is finalized and delivered to the software developers.
This is where system emulation and virtual environ-
ments step in and save the day. With the various
advanced hardware emulators and virtual machines
available today, embedded software developers can
get a head start on their applications.

The ablility to develop applications for a hard-
ware without the physical device itself is a definitely
a big advantage. However, there are other advan-
tages provided by the emulator too. It can make a
safe and secure environment for the testing of new
and untried applications. Since modern emulators
now support various kinds of hardware as well as
different operating systems, the application can also
be tested for scalability and reliability and not just
functionality. This makes virutalized environments
very powerful and feasible testing platforms. Em-
ulators also prove valuable in cases of kernel and
device driver development, where a small mistake
can crash the entire operating system. Developing
and debugging drivers on an emulator, makes it sim-
ilar to user-space applications, which at the worst
can lead to the emulator crash.

2 Virtualization and Emula-
tors

Since the term virtualization[1] was coined, over
four decades ago, it has been defined many times
and in many different ways. Virtualization is bas-
cially abstraction of one or more computer resources
to achieve the behaviour of the desired system. The
desired system here could be a high end grid com-
puter or a testing platform for a different archi-
tecture etc. In the beginning, the term emulation
was usually used for virtualization using hardware.
However, recently it has also become common to use
the term emulation in the software context. Emu-
lation[2] refers to the replication of functions of a
system by another, so that the emulator acts similar
to the emulated system.

There are various types of virtualizaton[3][4], de-
pending on the system being virtualized and levels of
abstraction used to achieve it. Hardware emulation
refers to the virtualization of the required hardware
on the host machine. It usually suffers from being
slow, however the major advantage offered is the abil-
ity to simultaenously develop software through sim-
ulation, as the hardware is being developed. QEMU
and Bochs are examples of hardware emulators. Na-
tive or Full virtualization uses a hypervisor which

acts as a mediator between the operating system and
the underlying hardware. This method is faster than
emulation, however the criteria is that the underlying
hardware must be supported by operating system.
KVM and VMware are examples of full virtualiza-
tion solutions. Paravirtualization uses a hypervisor
for shared access to the underlying hardware. This
method offers the best performance. However, since
the virtualization code is integrated into the operat-
ing system itself, the guest operating systems have to
be modified for the hypervisor. Xen and User Mode
Linux are examples of paravitualization.

3 Our Setup

3.1 Hardware

The target for emulation is a custom board made by
ABB. This board is based on the Freescale Lite5200
evaluation board[5]. The microprocessor on board
is the Freescale MPC5200B[6], a PowerPC embed-
ded processor based on the 400MHz MPC603e series
e300 core. It is provided with 64 megabytes of RAM
(DDR) and 32 megabytes of flash memory.

3.2 Software

The target board is a part of time critical control sys-
tems and hence there are real time constraints on the
application response times[7]. To accomplish this,
the target runs Linux kernel patched with the latest
rt-preempt patch[8]. As of now, the version running
on the hardware is Linux 2.6.29.4-rt17. However,
since the real time performance is not a criteria as
of now, we have reverted to the non rt version of
the Linux kernel for this emulation. Hence, for the
present time our requirements are limited to the
latest mainline kernel and also support for ethernet
ports. Ethernet is needed by the application to be
run on the board emulator as well as for remote de-
bugging of the application.

Traditionally, development of embedded software
has been done on Windows host, cross-compiled and
deployed on the target. In order to reduce the learn-
ing curve for embedded developers, it is important
that the host platform for this emulation be retained
as Windows.

4 Choices

A few virtualization methods and solutions were
evaluated keeping the above needs in mind. Below is
the list of the options considered.



4.1 Kernel Virtual Machine (KVM)

KVM[9] is a full virtualization solution for Linux on
x86 hardware. It comes in the form on a loadable ker-
nel module which provides the virtualization infras-
tructure as well as the processor specfic implementa-
tions. KVM has been a part of the mainline kernel
since 2.6.20 and is a very active open source project
with a strong developer community. The PowerPC
support however is still work in progress. Also there
is no support from Windows as the host machine.

4.2 VMware Server

VMware server[10] is a virtualization platfrom which
allows one to create and run virtual machines for dif-
ferent operating systems on a Linux or Windows x86
machine. It is partly open source. However, it does
not support PowerPC emulation.

4.3 Xen

The Xen[11] virtual machine monitor is a paravir-
tualization solution for x86 and PowerPC architec-
tures. The Xen hypervisor is the most privileged
layer, above which a wide range of guest operating
systems can run concurrently. The guest operating
systems need to be modified to be able to run on
Xen. Also the PowerPC support does not extend to
MPC603e core processors.

4.4 PearPC

PearPC[12] is an architecture independent PowerPC
platform emulator. This is an outdated project with
no current developments ongoing.

4.5 QEMU

Qemu[13] is an open source machine emulator writ-
ten by Fabrice Bellard. It has two modes of oper-
ation. In the User Mode emulation, it can execute
binaries compiled for different architectures on a x86-
Linux host. It can achieve near native performance
in this mode. In the System Mode emulation, oper-
ating systems and applications complied for different
architectures can be run on the host system with a
different Architecture-OS combination.

4.6 Why QEMU

Of the above options, a decision was made to use
QEMU for the emulation of the ABB custom board.
It was based on the following considerations.

• QEMU supports MPC603e core processor em-
ulation

• QEMU supports both x86-Windows and x86-
Linux as host machines

• QEMU is an active open source project with a
good developer community and support

5 Programming Embedded

systems using QEMU

An effective IDE which provides for efficient applica-
tion development consists of two main components

5.1 QEMU

For the reasons mentioned above, QEMU is the sys-
tem emulator that was selected to emulate the ABB
custom board for which applications need to be de-
veloped. The applications can be run and debugged
on the QEMU emulator just as they would on the
real board. The compilers and linkers used to build
the source code also remain the same, i.e. the ap-
plication is compiled on the host machine for the
Lite5200 target using cross-compilers (ELDK[14] on
Linux and CodeSourcery Lite[15] on Windows) as
usual. It is also possible to (remotely) debug the ap-
plication running on QEMU from the host machine
using GDB.

5.2 Eclipse

Eclipse is widely adapted as a development platform
for embedded systems for many good reasons[16].
One of the main reasons is that it is an open frame-
work with a plugin architecture that enables easy
development and integration of a variety of soft-
ware tools for embedded development. This is also
the reason why it supports usage of a number of
third party tools and interoperability between them,
which is a especially pertinent to embedded devel-
opment. Most of the issues faced by embedded soft-
ware developers like cross-platform development and
debugging, application portablility etc have been
addressed and solved to a large extent by the vast
open source community surrounding this project. A
number of commercial embedded IDE vendors also
employ Eclipse as their foundation to build upon[17].

Eclipse Ganymede[18] is used along with C/C++
Development Tools (CDT), Remote System Explorer
(RSE) and Remote CDT as the development plat-
form on a Windows host. The CDT perspective is
used for application coding, compilation and linking.
It provides a means of building the application for
the Lite5200 platform thru the use of CodeSourcery
cross tool chains for PowerPC. The RSE perspective



is used for establishing a SSH connection with the
QEMU. The RSE provides a console to the QEMU
and also enables one to browse through the remote
QEMU filesystem. The SSH connection made by the
RSE is also used by the Remote CDT debugger to
remotely run and debug applications on the QEMU
emulator.

6 QEMU on PowerPC

6.1 The right QEMU-PowerPC

Unfortunately, support for PowerPC platform in
QEMU is unstable. The QEMU emulator version
0.9.1 works for the latest kernel versions on Pow-
erPC platform [19] The latest QEMU releases (up
to 0.10.5) support Linux kernels only up to the ver-
sion.2.6.26. Presently we have a 2.6.26 kernel run-
ning on PowerPC QEMU on Windows host that is
primarily used for application development and de-
bugging. We also have the 2.6.31 kernel running with
the older QEMU on Linux host that is used as a test
machine.

6.2 Kernel image for PowerPC

The Linux kernel image for QEMU-PowerPC is built
in the usual manner, however arriving at a working
kernel configuration and compiling a working system
image requires effort. We use the standard Debian
configuration(Lenny) with a few minor changes on
Linux host. The DietPC[20] project has been a valu-
able resource in getting the QEMU PowerPC up on
Windows host.

6.3 Getting QEMU-PowerPC up

The emulator is invoked using the following com-
mand

qemu-system-ppc -L . -M g3beige -m 128 \

-localtime -no-reboot -name P-Robo \

-hdc "PRobo.img" -boot c\

-net nic -net user \

-redir tcp:22::22 tcp:2345::2345

Where qemu-system-ppc is QEMU PowerPC emula-
tor.

• -L . points to the directory containing the open-
bios firmware.

• -M g3beige sets the emulation to beige G3 pow-
ermac which is compatible with PowerPC 603e
cores.

• -m 128 sets the virtual RAM size to 128M.

• -localtime sets the RTC to local time.

• -no-reboot sets up QEMU to exit instead of
reboot.

• -name P-Robo sets the name of the guest to
P-Robo.

• -hdc “PRobo.img” directs QEMU to use
PRobo.img as the ide hard disk image.

• -boot c sets up the QEMU to boot from hard
disk.

• -net nice creates a NIC to and connects it to a
VLAN.

• -net user connects a user mode network stack
to the VLAN.

• -redir tcp:22::22 redirects SSH connections
from host to guest.

• -redir tcp:2345::2345 redirects default port for
gdbserver connections from host to guest.

FIGURE 1: QEMU PowerPC on x86-
Windows host

6.4 Eclipse

6.5 CDT and CodeSourcery

Eclipse Ganymede (with Eclipse CDT 5.0.1) is used
as the IDE for developing and building the appli-
cation. The CodeSourcery Lite cross tool chain
for PowerPC is used to compile for mpc5200 tar-
get on Windows host. The cross compiler and linker
are specified under the C/C++ build section in the
project properties along with appropriate build flags.



6.6 SSH connection to QEMU

RSE (version 3.0.0 from DSDP) is used to create a
SSH connection to the QEMU emulator. This can be
done by connecting to the local host via SSH, since
the SSH port of the host has been redirected to the
SSH port of the emulator. The procedure to connect
to the QEMU via SSH on root login is depicted by
the snapshot below.

FIGURE 2: Creating a SSH connection
from host to QEMU in Eclipse

Once this connection had been established a re-
mote shell can be launched on the QEMU using the
“Launch Shell” option under “SSH Shells” as shown
below. This shell can be used to browse the emulator
filesystem and run commands on the emulator.

FIGURE 3: QEMU (remote) shell on
Eclipse

6.7 Application Execution on QEMU

Once the application has been built for the target, it
can be downloaded and run on the target by choosing
the appropriate run configuration. The “C/C++ Re-
mote Application” configuration has be selected and
settings like “Connection”, “Remote Absolute File

Path” etc has to be set as shown below.

FIGURE 4: Setting up Eclipse to run the
application remotely

On running the application, the output is dis-
played on a remote console on Eclipse as shown.

FIGURE 5: Remote QEMU console on ap-
plication

6.8 Remote Debugging on QEMU

Once the application is running on the remote em-
ulated board, the next step is to debug it. This is
done by setting the debug configuration to “C/C++
Remote Application” and directing it to the right
cross-tool gdb executable

FIGURE 6: Setting up Eclipse to debug the
application remotely



Debugging the application on the remote emu-
lated host is done in a similar manner as with na-
tive applications. The snapshot below shows a very
simple hello world program being debugged on the
PowerPC QEMU.

FIGURE 7: Debugging application re-
motely on QEMU with Eclipse

7 Conclusions

Using the above mentioned method, it is thus pos-
sible to create a development environment for em-
bedded applications, that frees the developer team
from the constraints imposed by hardware. It is
also possible to further develop this into an secure
and efficient testing platform. Virtualization en-
ables this by providing the ability to simulate com-
ponents like load generators, performance monitors
and other resources beyond the scope of a usual
test setup. QEMU proves to be a viable tool today
to shorten development time for complex embedded
system projects. When integrated with Eclipse it
makes a fairly complete software development envi-
ronment reducing the time to market for embedded
products. Having a complete development and test
emulation in place without having to depend on the
underlying hardware, is a great advantage to embed-
ded software developers attempting to optimize the
product development in this fast changing market

8 Future Scope

QEMU for x86 based embedded platforms today is
stable and effective. However, it has some distance
to go when it comes to extensibility to allow users to
easily customize peripherals and also support multi-
core and latest CPU architectures other than x86.

The potential that simulation and emulation
technologies offer in different stages of embedded
software development is truly exciting. Be it easy
and quick prototyping of research ideas for concept

validation or to simulate large and distributed sys-
tems in a virtual environment, these technologies
save valuable time and effort. One interesting use of
these technologies is in cross-platform development
without the need for cross-compliers and linkers[21].
Cross compiling the BSP and user-space applications
for another platform, is the most tedious and error
prone stage of cross-platform development that re-
quires repeated setting up of the environment vari-
ables and tool upgradation. Creating a virtualized
native development environment for the applications
is an efficient way to overcome these obstacles.

9 Glossary

QEMU Quick EMUlator
IDE Integrated Development Environmnet
CDT C/C++ Development Tools
RSE Remote System Explorer
ELDK Embedded Linux Development Kit
SSH Secure SHell
GDB GNU Debugger

References

[1] http://en.wikipedia.org/wiki/Virtualization

[2] http://en.wikipedia.org/wiki/Emulator

[3] Virtual Linux, An overview of virtualization
methods, architectures, and implementations by
M Tim Jones, IBM developerWorks

[4] An Introduction to Virtualization by Amit
Singh, Kernelthread.com

[5] http://www.freescale.com/files/microcontrollers/
doc/prod brief/MPC5200LITEPB.pdf?fsrch=1

[6] http://www.freescale.com/webapp/sps/site/
prod summary.jsp?code=MPC5200B&fsrch=1

[7] Evaluation of Linux rt-preempt for embedded
industrial devices for Automation and Power
technologies - A case study by Morten Mossige,
Pradyumna Sampath, Rachana Rao

[8] http://rt.wiki.kernel.org

[9] http://www.linux-kvm.org/page/Main Page

[10] http://www.vmware.com/products/server/

[11] http://www.xen.org/

[12] http://pearpc.sourceforge.net/

[13] http://www.qemu.org/

[14] http://www.denx.de/wiki/DULG/ELDK



[15] http://www.codesourcery.com/sgpp/lite/power

[16] Eclipse: Under The hood, Overview of the
Eclipse open-source IDE framework by Robert
Day, Embedded.com

[17] Standardizing on a common embedded Eclipse
IDE by Martin Whitbread, Embedded.com

[18] http://www.eclipse.org/ganymede/

[19] Rob Landley’s blog thing for 2009 -
http://www.landley.net/notes.html#25-06-
2009

[20] DIET-PC(DIskless Embedded Technology Per-
sonal Computer) project by Paul A. Whittaker
- http://www.dietpc.org/

[21] Firmware Linux - Embedded Linux
build system by Rob Landley -
http://www.landley.net/code/firmware/


	Introduction
	Virtualization and Emulators
	Our Setup
	Hardware
	Software

	Choices
	Kernel Virtual Machine (KVM)
	VMware Server
	Xen
	PearPC
	QEMU
	Why QEMU

	Programming Embedded systems using QEMU
	QEMU
	Eclipse

	QEMU on PowerPC
	The right QEMU-PowerPC
	Kernel image for PowerPC
	Getting QEMU-PowerPC up
	Eclipse
	CDT and CodeSourcery
	SSH connection to QEMU
	Application Execution on QEMU
	Remote Debugging on QEMU

	Conclusions
	Future Scope
	Glossary

