
Requeue-PI: Making Glibc Condvars PI-Aware

Darren Hart

International Business Machines

15300 SW Koll Pkwy, DES2 4F 1, Beaverton, OR 97006, United States

dvhltc@us.ibm.com

Dinakar Guniguntala

International Business Machines

Embassy Golf Links, Koramangala Ring Road, Bangalore, KA 560071, India

dino@in.ibm.com

Abstract

Glibc 2.5 and later provide some support for priority inheritance (PI), but some gaps in the pthread_

cond* APIs severely cripple its utility and lead to unexpected priority inversions and unpredictable thread
wake-up patterns. By adding kernel support for proxy locking of rt-mutexes and requeueing of tasks to
PI-futexes, glibc can provide PI support across the entire spectrum of mutex and condvar APIs. For
some complex applications, completely avoiding priority inversion can be impractical if not impossible.
For such applications, this provides a robust POSIX threading mechanism. Broadcast wake-ups can now
be more efficient, waking threads up in priority order as the contended resource becomes available.

1 Introduction

Condition variables (condvars) provide a convenient
userspace API to block a thread (or group of threads)
on an event. Under the covers, condvars are imple-
mented using futexes. A condvar uses multiple fu-
texes, one for use as a wait-queue and one for locking
its internal state. In addition, each condvar has an
associated mutex specified by the waiters, which is
also implemented using a futex. Threads blocking on
an event call pthread_cond_wait() 1 with the asso-
ciated mutex held (glibc will release the mutex prior
to calling into the kernel), see Figure 1. When the
waking thread calls pthread_cond_broadcast() 2,
the caller expects the blocked threads to stop waiting
on the event and begin contending for the associated
mutex. The mutex is acquired before control returns
to the application code (glibc performs the mutex ac-
quisition). pthread_cond_broadcast() notifies all

threads of the event (while pthread_cond_signal()
only notifies one) 3 [11].

FIGURE 1: Threads blocked on condvar af-
ter multiple pthread cond wait() calls.

1Throughout the paper, when pthread cond wait() is mentioned, the same applies to pthread cond timedwait() unless stated
otherwise.

2Throughout the paper, when pthread cond broadcast() is mentioned, the same applies to pthread cond signal() unless stated
otherwise.

3See the man pages for more gory details on the POSIX standard.

In the event of a broadcast, only one thread is woken
to return to userspace, while the rest are requeued
from the condvar to the mutex 4. The thread that
is woken then acquires the mutex (in glibc) before
returning to the application, see Figure 2. The un-
locking of the mutex by the application then triggers
the next eligible thread to be woken, and so on.

FIGURE 2: Thread state after
pthread cond broadcast() (non PI case).

Futexes make use of the kernel-side rt_mutex

for priority inheritance support. These locks have
complex semantics regarding their owner and wait-
ers which caused requeue support for PI futexes (re-
queue PI) to be deliberately left out in the initial im-
plementations. Without kernel support for requeue
PI, glibc could only wake all the waiters blocked on
the condvar’s wait-queue and leave them to race to
return to userspace and try to acquire the associated
mutex, see Figure 3. The first one to return got the
mutex and the rest were put back to sleep on the mu-
tex 5. This effectively requeues all the threads but
one, but does so in a very inefficient way. This causes
additional context switches and compromises deter-
ministic scheduling since no care is taken to ensure
the highest priority waiting task acquires the mutex.
This “wake all” approach creates what is commonly
referred to as a “thundering herd”.

Additionally, the internal lock protecting the
condvar’s state is not PI-aware. This means that
even while using a PI-aware mutex, users of cond-
vars are susceptible to unbounded priority inversion
on the condvar’s internal lock. An unbounded prior-
ity inversion can occur when a high priority task is
blocked on a lock held by a lower priority task that

has been preempted by a medium priority task. In
this scenario, the high priority task is blocked for as
long as there are runnable tasks of higher priority
than the lock holder.

FIGURE 3: Thread state after
pthread cond broadcast() (PI case without
requeue PI support).

PI is often used in conjunction with other real-
time features of the Linux kernel. These gaps in the
PI stack hurt performance for applications using PI
mutexes with condvars at best, and can lead to non-
intuitive priority inversions at worst. The additional
wake-ups, latency, and the unbounded priority in-
version can be a show stopper for real-time applica-
tions with hard deadlines. Earlier attempts [14] to
solve this problem were rejected for various reasons,
including complexity and inefficiency. Nonetheless,
those early attempts were valuable in guiding the
development of this solution.

In the following sections, we will describe our so-
lution to the problem, which consists of both kernel
and glibc changes. Section 2 presents examples of
test cases that fail or are adversely affected by this
problem, as well as detailing the specific technical
challenges involved in devising a solution. Section
3 provides an overview of the general Linux futex
implementation as background for Section 4 which
describes the Linux kernel and glibc aspects of the
solution. Finally, Section 5 presents the successful
results of the same test cases shown earlier.

4Assuming the mutex does not have the priority inheritance attribute set.
5This scenario is complicated slightly if the signaling thread holds the mutex across the call to pthread cond broadcast().

2 Problem Definition

2.1 Failure Scenarios

The disorderly wake-up is really a functional issue,
especially when viewed in the context of real-time
applications. The prio-wake test case from the LTP
[6] real-time test suite illustrates the problem read-
ily. Prio-wake creates NR_CPUS SCHED_FIFO threads
of increasing priority and puts them to sleep on a
condvar. It then calls pthread_cond_broadcast()

and logs the threads’ wake-up order. If they do not
wake in strict priority order the test fails, as illus-
trated in Listing 2, lines 12-13. The test can be run
with or without the associated mutex held across the
pthread_cond_broadcast() call. It is next to im-
possible for a current system to pass the test without
the lock held, but even with it held, failures are very
common (75% in our testing).

It is difficult to provide a non-contrived test case
for unbounded priority inversion on the condvar in-
ternal lock. However, the problem has been ob-
served on Real Time Specification for Java (RTSJ)
[8] compliance test suites and other large thread-
intensive applications. This problem usually man-
ifests by the program not making progress with high
priority threads blocked on a pthread_cond_* call.

2.2 No Ownerless RT-Mutexes

The mechanism used to implement PI within the
Linux kernel is the rt_mutex. The rt_mutex main-
tains a list of tasks blocked on it in its wait_list

field. Each task maintains a list of the highest pri-
ority task blocked on every rt_mutex it owns in
the pi_waiters list of the task_struct. These
lists combine to form the priority inheritance chain
(PI chain) that is used to boost the priority of the
rt_mutex owner to that of the highest priority task
blocked on the rt_mutex. The details of the PI chain
are beyond the scope of this paper, but are well doc-
umented in [2] and [15]. It is sufficient to state that
to ensure the PI boosting logic succeeds whenever
a new task attempts to acquire a contended lock,
an rt_mutex must never be in a state where it has
waiters and no owner. Without an owner, the PI
boosting logic would not find a task to boost, and
the PI mechanism would break down.

The original glibc implementation of pthread_
cond_wait() for non-PI mutexes waits for the waiter
to return from the kernel after a pthread_cond_

broadcast() before trying to acquire the associated
mutex, as illustrated by lines 7-9 of Listing 1.

The problem with this implementation is the
window of time between the wake-up after line 7 and
the lock on line 9. Using the futex requeue mecha-
nism, the waking thread would wake one waiter and
requeue the remaining to the associated mutex. It
then returns to userspace and releases the associated
mutex 6. Meanwhile, the newly woken thread at-
tempts to acquire the mutex. Should the waking
thread release the mutex before the waiter can block
on it, the mutex will be left with no owner and mul-
tiple waiters, violating the usage semantics of the
rt_mutex.

1 cond wait (cond , mutex)
2 {
3 l o ck (cond−> data . l o c k) ;
4 unlock (mutex) ;
5 do {
6 unlock (cond−> data . l o c k) ;
7 fu t ex (cond−> data . f u t ex ,
8 FUTEX WAIT) ;
9 l o ck (cond−> data . l o c k) ;

10 } while (. . .)
11 unlock (cond−> data . l o c k) ;
12 l o ck (mutex) ;
13 }

Listing 1: Original pthread cond wait() pseudo-
code.

As mentioned previously, the original solution to
this problem was to wake all the tasks blocked on the
condvar, rather than requeue them as waiters, and
allow them to race for acquisition of the associated
mutex. Once the mutex is acquired by one of the
waiters, the remaining late arrivals will then be put
to sleep on the mutex. Future unlocks will work the
same as any pthread_mutex_unlock() call would,
giving the lock to the next highest priority waiter
and waking it up. The initial race leads to unpre-
dictable wake-up order and a lot of unnecessary con-
text switches and thrashing about within the sched-
uler.

3 Meet the Futex

Prior to diving into the problems priority inheritance
presents futexes, a basic understanding of what fu-
texes are and how they work is needed. The best
reference for the basic operations of futexes and how
they can be used to create higher-level locking mech-
anisms is probably still Ulrich Drepper’s “Futexes

6It is possible that the waking thread did not hold the mutex, which is a valid usage of the API, in which case it will not
need to unlock it after signaling the waiters.

1 # ./ pr io−wake
2

3 −−−−−−−−−−−−−−−−−−−−−−−
4 Pr i o r i t y Ordered Wakeup
5 −−−−−−−−−−−−−−−−−−−−−−−
6 Worker Threads : 8
7 Cal l ing pthread cond broadcast () with mutex : LOCKED
8

9 00000527 us : Master thread about to wake the workers
10

11 Cr i t e r i a : Threads should be woken up in p r i o r i t y order
12 FAIL : Thread 7 woken be f o r e 8
13 Resu lt : FAIL
14 000000: 00000102 us : RealtimeThread −8388768 p r i 001 s t a r t ed
15 000001: 00000166 us : RealtimeThread −8389264 p r i 002 s t a r t ed
16 000002: 00000217 us : RealtimeThread −8389760 p r i 003 s t a r t ed
17 000003: 00000284 us : RealtimeThread −8390256 p r i 004 s t a r t ed
18 000004: 00000332 us : RealtimeThread −8390752 p r i 005 s t a r t ed
19 000005: 00000386 us : RealtimeThread −8391248 p r i 006 s t a r t ed
20 000006: 00000432 us : RealtimeThread −8391744 p r i 007 s t a r t ed
21 000007: 00000481 us : RealtimeThread −8392240 p r i 008 s t a r t ed
22 000008: 00000691 us : RealtimeThread −8391744 p r i 007 awake
23 000009: 00000753 us : RealtimeThread −8392240 p r i 008 awake
24 000010: 00000813 us : RealtimeThread −8391248 p r i 006 awake
25 000011: 00000855 us : RealtimeThread −8390752 p r i 005 awake
26 000012: 00000885 us : RealtimeThread −8390256 p r i 004 awake
27 000013: 00000929 us : RealtimeThread −8389760 p r i 003 awake
28 000014: 00000953 us : RealtimeThread −8389264 p r i 002 awake
29 000015: 00000968 us : RealtimeThread −8388768 p r i 001 awake

Listing 2: Failing prio-wake example.

are Tricky” [12]. “Fuss, Futexes and Furwocks: Fast
Userlevel Locking in Linux” [13] is also a good his-
torical reference, although fairly out of date at this
point.

A futex is a fast userspace lock [3], although there
is truly no such structure that can be said to encap-
sulate a futex. A futex is a very basic locking mech-
anism, and is typically used to construct higher level
primitives. The most basic component of a futex
is its userspace variable, a four byte unsigned inte-
ger on all platforms. The uncontended path usually
involves the futex variable being marked as locked
in userpace without having to call into the kernel.
While the futex implementation initially made no
requirements on how this value is used, the priority
inheritance implementation uses this value to deter-
mine the owner of the futex and whether or not it
has waiters.

From the kernel side, each futex address is con-
verted into a futex_key using the physical mem-
ory address so that processes sharing a futex can
use their own address space to reference the same
futex. Each task blocked on a futex is represented
by a futex_q structure, see Listing 3, which uses

the futex_key to add itself to a hash-table of pri-
ority lists of futex_q structures. As there are typi-
cally only 128 entries in the hash-table, collisions are
expected; each hash-list will contain futex_q struc-
tures representing tasks waiting on multiple futexes.
The futex_key is used to determine which elements
are of interest to a given operation. Figure 4 illus-
trates this structure. A simple single-linked list is
depicted for clarity, however, a plist is used in the
actual implementation to ensure tasks are queued in
fifo order by priority [15].

struct fu t ex q {
struct p l i s t n od e l i s t ;
struct t a s k s t r u c t ∗ task ;
s p i n l o c k t ∗ l o c k p t r ;
union fu t ex key key ;
struct f u t e x p i s t a t e ∗ p i s t a t e ;
struct r t mutex wa i t e r ∗ r t wa i t e r ;
union fu t ex key ∗ r equeue p i k ey ;
u32 b i t s e t ;

} ;

Listing 3: struct futex q.

FIGURE 4: Futex hash table queueing
structure.

Futexes are fast in the uncontended case, be-
cause the acquisition can be done from userspace us-
ing atomic instructions, such as cmpxchg on x86. In
the contended case, the kernel is invoked to handle
blocking and wake-up. There is a single system call
for all futex related operations, sys_futex, shown
in Listing 4. It accepts an operation argument, op,
which is used to determine the appropriate kernel
function.

long s y s f u t e x (void ∗addr1 , int op ,
int val1 , struct t imespec ∗ timeout ,
void ∗addr2 , int val3) ;

Listing 4: sys futex definition

The supported futex operations include: FUTEX_
WAIT, FUTEX_WAKE, FUTEX_CMP_REQUEUE, FUTEX_

LOCK_PI, FUTEX_UNLOCK_PI (and now FUTEX_WAIT_

REQUEUE_PI and FUTEX_CMP_REQUEUE_PI). This list-
ing omits a couple more obscure operations that are
not particularly relevant to the problem at hand.

FUTEX_WAIT implements a wait-queue using fu-
texes. The calling thread is suspended until it is
either notified, times out, or receives a signal. A
key implementation detail worth noting is that be-
fore the thread is suspended, the kernel compares the
expected value of the futex (val1) with what it reads
from the userspace address (addr1). If they do not
match, -EWOULDBLOCK is returned to userspace. This
check ensures that the kernel and userspace are in
agreement with the state of the futex. This ensures,
for instance, that a wake-up is not issued immedi-
ately before the waiting thread is enqueued on the
futex and suspended, only to sit there indefinitely
having missed the wake-up.

FUTEX_WAKE is used to wake one or more threads
blocked on a futex. As an update to the ”Futexes
are Tricky” article [12], futex queues are now im-
plemented with a plist and waiters are woken in
priority order.

FUTEX_CMP_REQUEUE is used to wake one or more
threads waiting on addr1 and move the rest to
wait on addr2 without waking them first. As with
FUTEX_WAIT, the expected value of the first futex is
compared prior to performing the requeue; -EAGAIN
is returned in the event of a mismatch. This protects
against another wait, wake, or requeue event com-
pleting before the hash-list locks can be acquired.
Once acquired, the futex value is guaranteed not to
change by convention, as userspace obviously could
write to the value at any time. The obvious user of
this operation is pthread_cond_broadcast().

The PI futex operations diverge from the oth-
ers in that they impose a policy describing how
the futex value is to be used. If the lock is un-
owned, the futex value shall be 0. If owned, it
shall be the thread id (tid) of the owning thread.
If there are threads contending for the lock, then
the FUTEX_WAITERS flag is set. With this policy in
place, userspace can atomically acquire an unowned
lock or release an uncontended lock using an atomic
instruction and their own tid. A non-zero futex
value will force waiters into the kernel to lock. The
FUTEX_WAITERS flag forces the owner into the kernel
to unlock. If the callers are forced into the kernel,
they then deal directly with an underlying rt_mutex

which implements the priority inheritance semantics.
After the rt_mutex is acquired, the futex value is up-
dated accordingly, before the calling thread returns
to userspace.

For an exhaustive discussion of the various op-
erations and the subtleties of the interface, see [12],
[3], [1], and of course, kernel/futex.c.

Glibc uses futexes to implement both pthread
condition variables and pthread mutexes, which
are the two primitives relevant to this discussion.
Pthread barriers are also implemented using fu-
texes. Other locking mechanisms, such as System
V semaphores [9], are unrelated to futexes.

4 The Solution

The core of the problem is ensuring that an rt_

mutex, and by extension the PI futex, is never left in
a state with waiters and no owner. This is a unique
situation to futex_requeue() because the waiting
task blocked on a non-pi futex (typically the wait-

queue of a condvar), and so did not prepare the nec-
essary accounting prior to going to sleep. Therefore,
before it can wake up, this accounting must be done
on its behalf by another thread - proxy locking as
I refer to it in the source. Figure 5 illustrates the
desired result.

With the kernel handling the locking of the as-
sociated mutex, glibc must be updated to not try to
acquire the lock after wake-up in the PI case. Since
there is no POSIX interface to explicitly set the type
of a pthread condvar, the condvar will need to be
able to dynamically determine if it should use a PI-
aware mutex for its internal lock based on the mutex
the user associates with it at wait time.

FIGURE 5: Thread state after
pthread cond broadcast() (PI case with
requeue PI support).

4.1 Kernel Details

4.1.1 RT-Mutex Proxy Locking

As the solution revolves around the rt_mutex, a ba-
sic familiarity with its usage is necessary. Acquiring
an rt_mutex is always done in two basic steps: try
to acquire it atomically, failing that, block waiting
for the owner to release the lock. This is actually
performed in a loop as small race windows exist be-
tween the task waking up and taking the necessary
locks and actually acquiring the rt_mutex, during
which a lock steal may occur. Before blocking, the

contending thread must set up an rt_mutex_waiter

and add it to the rt_mutex.wait_list. It is from
this list that the next owner is selected when the
rt_mutex is released. Some other accounting is also
performed related to maintaining the PI chain to
ensure the owner is always running at the prior-
ity of the highest priority waiter. In order to im-
plement userspace-accessible-PI-aware locking prim-
itives, futexes are bound to an rt_mutex via the
futex_pi_state structure. The details of the pri-
ority inheritance implementation and the priority
boosting mechanism are beyond the scope of of this
paper, refer to [1] and [15] for more details.

Requeuing a futex involves two separate execu-
tion contexts: the waiter and the signaler, corre-
sponding to pthread_cond_wait() and pthread_

cond_broadcast() respectively. The waiter will sus-
pend on a futex and the signaler will wake or requeue
it to another futex. As the intended result is serial-
ized priority ordered wake-up, to avoid the thunder-
ing herd, the requeue will wake at most one thread
and requeue the rest.

If the requeue target (corresponding to the PI
mutex associated with the condvar) is held for the
duration of the requeue, then no wake-up will oc-
cur. However, a simple requeue is not sufficient as
the requeued threads are now officially waiters for
the rt_mutex backing the requeue target futex. The
rt_mutex_waiter structures must be set up and the
various PI chain structures must be updated so that,
if necessary, the priority of the rt_mutex owner may
be boosted to that of the highest priority requeued
task (the top-waiter). When the owner releases the
lock, the top-waiter will be woken and will need to
complete the lock acquisition the signaler started on
its behalf.

Should the requeue target be uncontended, or
if a lock steal is possible 7, the top-waiter should
acquire the rt_mutex and return to userspace. Un-
fortunately, the lock acquisition cannot be left up to
the waiter for reasons discussed earlier (a race back
to userspace that may leave the rt_mutex with wait-
ers and no owner). The signaler must acquire the
rt_mutex on behalf of the top-waiter prior to either
of them returning to userspace.

Two new rt_mutex routines were added to en-
able proxy locking: rt_mutex_start_proxy_lock()
and rt_mutex_finish_proxy_lock(). First, rt_

mutex_slowlock() was carefully refactored into its
atomic and blocking sections and assumptions about
the task to acquire the lock being current were re-
moved. This refactoring maximizes the amount of

7It is also possible that the owning task died and we are using robust futex.

code reused in the new routines.

The proxy lock process begins with a call to
rt_mutex_start_proxy_lock(), as defined in List-
ing 5.

int r t mu t ex s t a r t p r oxy l o ck (
struct rt mutex ∗ lock ,
struct r t mutex wa i t e r ∗waiter ,
struct t a s k s t r u c t ∗ task ,
int detec t dead lock)

Listing 5: rt mutex start proxy lock() definition.

Here, task is the task for which lock is to
be acquired. After taking the lock.wait lock,
an atomic acquisition is attempted which will suc-
ceed if the lock is uncontended (no owner and no
waiters) or if a lock steal succeeds. If successful,
task is set as the new owner, and the routine re-
turns. Failing an atomic lock, the waiter struc-
ture is prepared and the PI chain is propagated via
task blocks on rt mutex(), but the current execu-
tion context is not suspended since it is not acquiring
the lock for itself. task is now blocked on lock as
though it had called rt mutex lock() itself.

If the lock was not acquired atomically, the
waiter will have to complete the lock acquisition
when it is woken with a call to rt_mutes_finish_

proxy_lock(), as defined in Listing 6.

int r t mu t ex f i n i sh p r oxy l o ck (
struct rt mutex ∗ lock ,
struct h r t im e r s l e e p e r ∗ to ,
struct r t mutex wa i t e r ∗waiter ,
int detec t dead lock)

Listing 6: rt mutex finish proxy lock() definition.

With the waiter already prepared and the PI
chain accounting taken care of, the newly woken
waiter reuses the refactored rt mutex slowlock()

to complete the lock acquisition. This will try to
take the lock atomically, which will often succeed in
the common case where the task is woken by the pre-
vious owner. Should the lock be stolen by a higher
priority waiter, the task will suspend itself and wait
for another wake-up. The loop ends when the lock is
acquired or the timeout, to, expires.

4.1.2 New Futex Operations

The restrictions imposed by the use of the rt_mutex

made it necessary to create two new futex operations:
FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_

PI. The former demuxes through the system call to
a new function, futex_wait_requeue_pi(), while
the existing futex_requeue() was able to handle

the latter with some modifications. The new futex_

wait_requeue_pi() function is the result of a high-
speed collision between the existing futex_wait()

and futex_lock_pi(), both of which were refac-
tored slightly in order to maximize code reuse.

A task wishing to block on a futex (futex1) until
another thread indicates it should try and acquire an-
other futex (futex2) (such as pthread_cond_wait())
starts by calling:

f u t ex wa i t r equ eu e p i (uaddr , f shared ,
val , timeout , b i t s e t , c l ock r t , uaddr2) ;

Here, uaddr is the userspace address represent-
ing futex1, fshared is 0 (implying a private map-
ping), val is the expected value of uaddr, timeout
is the timeout in absolute time, and bitset is cur-
rently unused and may be removed in a future re-
vision. clockrt is 1 or 0, indicating which clock id
(CLOCK_REALTIME or CLOCK_MONOTONIC) abs_time is
represented in. Finally, uaddr2 is the userspace ad-
dress representing futex2.

futex_wait_requeue_pi() will first go through
the same steps as futex_wait() to prepare to block
on futex1, but prior to doing so will also prepare
an rt_mutex_waiter and a futex_key (encoding fu-
tex2) on the stack and reference then in the futex_q
for the requeue code to reference later. Once sus-
pended on futex1, the waiter will wake due to a fu-
tex wake-up event, a signal, or timeout, in one of
two states: while queued on futex1 or after requeue
to futex2. By way of introduction, consider the ex-
pected path: being deliberately woken due to a futex
action (rather than a signal or a timeout) after being
requeued to futex2. Once woken, the waiter must de-
termine if the rt_mutex has been fully acquired on
its behalf, by futex_requeue(), or if it must com-
plete the lock acquisition. This is a simple matter of
testing the futex_q.rt_waiter for NULL, as shown
in the overly simplified pseudo-code in Listing 7.

i f (! q . r t wa i t e r)
return 0 ;

else

r t mu t ex f i n i sh p r oxy l o ck (pi mutex ,
to , &r t wa i t e r , 1) ;

Listing 7: Simplified pseudo-code of the lock acqui-
sition test in futex wait requeue pi().

If the lock was acquired atomically by the re-
queue code, the rt_waiter in the futex_q will be
NULL. If it is not, the waiter must now complete
the lock acquisition via the proxy locking code de-
scribed earlier. Either way, the waiter will return to
userspace holding futex2 and the rt_mutex associ-
ated with it.

Due to the nature of futexes, which necessitates
access to userspace values from within the kernel,
the actual implementation is much less cut and dry.
Futex code is susceptible to faults, signals, timeouts,
and must protect the kernel from any sort of evil
userspace can conceive to throw through the system
call. These routines were carefully constructed to
group code that may fault together and place it early
in the routine to minimize cleanup should a fault oc-
cur.

The new futex_wait_requeue_pi() function
presents a particular challenge due to its numerous
potential states. Figure 6 illustrates a slightly sim-
plified state transition diagram for the life-cycle of
the function. In the PRE WAIT state, the function
checks its arguments and read-write permission on
the futex address (where it may fault), prepares the
futex_q, sets up the timeout (if there is one), and
acquires the hash-list lock. If the bitset is empty or
if an unrecoverable fault occurs, the routine returns
an appropriate error code. Once the hash-list lock
is acquired, the routine enters the QUEUEING state
where it will compare the expected futex value with
the actual value (where it may have to drop the hash-
list lock and return to PRE WAIT to handle a fault,
or return -EFAULT in the event of an unrecoverable
fault), if the values differ, it returns -EWOULDBLOCK.
If they match, the task is suspended on the first fu-
tex and enters the QUEUED state. This is the first
“sleep state”, indicated in gray.

From any sleep state, a futex routine will resume
execution for one of three reasons: a signal was de-
livered, a timeout occurred, or a futex wake event oc-
curred. Each of these must be processed on exit from
the QUEUED state. Before exiting with -ETIMEDOUT

or -ERESTARTNOINTR (due to a signal), the QUEUED
state must first determine which futex the task was
woken on. By comparing the futex_q.keywith that
of the second futex, it determines if the task was
requeued by futex_requeue() already. If the task
was woken prior to requeue, then the cause of the
wakeup is either a timeout or a signal. The appropri-
ate error code is returned. If the task was requeued
prior to wakeup, then those are still valid causes, but
futex_requeue() may have also acquired the lock
on its behalf, in which case the signal and timeout are
ignored, and the routine returns 0, indicating a suc-
cessful wakeup and lock acquisition. This can be de-
termined by testing the futex_q.rt_waiter which
futex_requeue() will set to NULL in the event of
an atomic lock acquisition. If the rt_waiter is non-
null, the REQUEUED state is entered, meaning the
task has been requeued, but the lock has not yet been
acquired.

At this point, before checking for a timeout or
signal, the routine attempts to atomically acquire the
lock in case it became available. Failing that, it will
check for timeout and signal. In the event of a time-
out, -ETIMEDOUT is returned. If a signal is pending,
the system call could be restarted, but since the re-
queue has already occurred the futex value will have
changed, causing the restarted syscall [10] to imme-
diately return -EWOULDBLOCK. As such, in the event
of a signal -EWOULDBLOCK is returned as a slight op-
timization. Finally, if no timeout or signal was re-
ceived, the task will continue to finalize the rt_mutex
acquisition. If contended, or in the event of a lock
steal, the task is suspended. It will wake due to a
signal, timeout, or rt_mutex unlock event, at which
point the test for lock acquisition, signal, and time-
out continues until one of the three is true.

FIGURE 6: State transition diagram for
futex wait requeue pi().

Fortunately, futex_requeue() was able to be
modified to support requeue PI and a new func-
tion was not needed. A task wishing to wake the

tasks blocked on futex1 and have them wake and
acquire futex2 in priority order (such as pthread_

cond_broadcast()) begins by calling:

int fu t ex requeue (uaddr1 , f shared ,
uaddr2 , nr wake , nr requeue , cmpval ,
r equeue p i)

Here, uaddr1 is the user address representing
futex1, fshared is 0 (indicating a private map-
ping), uaddr2 is the user address representing fu-
tex2, nr_wake is 1 (any other value is invalid as only
one task can own the rt_mutex at any given time),
nr_requeue indicates the number of tasks to requeue
(usually 0 or INT_MAX for all), cmpval is the expected
value of futex1, and requeue_pi is 1 (indicating fu-
tex2 is PI futex).

Figure 7 shows the state diagram for futex_

requeue() with the requeue_pi variable set to 1.
In the SETUP state, the function checks for valid
arguments, ensures a pi_state has been allocated
for use, and ensures appropriate read-write permis-
sions on the two futexes. If memory cannot be allo-
cated for the pi_state, -ENOMEM is returned. Once
complete, both hash-list locks are acquired, and the
function enters the ATOMIC LOCK state.

Here, the function compares the expected value
with the actual value of futex1 (which may fault and
force an unlock of the hash-list locks and a return
to the SETUP state). If the values do not match,
-EAGAIN is returned. Next, the routine attempts to
acquire the lock on behalf of the top-waiter. If the
lock cannot be acquired, or if nr_requeue is non-
zero, the FUTEX_WAITERS bit is set for futex2. This
may result in a fault, which is easier to deal with
before entering the REQUEUE LOOP state. If the
lock succeeds, as it will if the lock is uncontended
or if a lock steal occurs, the top-waiter’s futex_q is
removed from its hash-list, its futex_q.key is up-
dated to that of futex2 (to indicate a requeue), its
futex_q.lock_ptr is updated to that of the hash-
list for futex2, and its futex_q.rt_waiter is set to
NULL to indicate the rt_mutex has been acquired
on its behalf. The top-waiter is then woken, at which
point it will resume from the QUEUED state in
futex_wait_requeue_pi() and promptly return to
userspace with the lock held. If this atomic lock ac-
quisition fails, the top-waiter will simply be requeued
with the remaining nr_requeue waiters in the next
state. For the first waiter on the rt_mutex, the pre-
viously allocated pi_state is setup with the current
owner of futex2 as the new rt_mutex owner (this
may occur here or in the REQUEUE LOOP state).
If, however, the futex_q.requeue_pi_key is found
not to match key2, then -EINVAL will be returned to
userspace, indicating that userspace tried to requeue

to a target futex other than that which the waiter
was expecting.

FIGURE 7: State transition diagram for
futex requeue().

The REQUEUE LOOP state follows and is the
core of the futex_requeue() routine. For each
matching futex_q on the first hash-list, the loop will
assign the futex_q.pi_state to the that represent-
ing the rt_mutex backing futex2 (described above)
and call rt_mutex_start_proxy_lock(). This call
will return 1 if the lock was acquired atomically, 0
on a successful enqueueing on the rt_mutex, and
-EDEADLK for various deadlock scenarios. On an
atomic lock acquisition, the task is woken in same
manner as in ATOMIC LOCK. On a successful en-
queue of the task on the rt_mutex, the futex_q is
removed from the first hash-list and placed on the
second while its lock_ptr is updated accordingly.
Once the loop has completed, the total number of
tasks woken or requeued is returned to indicate suc-
cess. The requeue loop may be interrupted in a few
special cases. If requeue_pi is 1 and the current
futex_q (this) has a NULL rt_waiter, -EINVAL
is returned, indicating that the user mismatched a
requeue-PI call with a non-requeue-PI call. The two

new futex operations, FUTEX_WAIT_REQUEUE_PI and
FUTEX_CMP_REQUEUE_PI must be paired only with
each other. As with the earlier atomic lock attempt,
if the futex_q.requeue_pi_key does not match
key2, -EINVAL is returned. Finally, in the event of a
deadlock, -EDEADLK is propagated to userspace.

4.2 Glibc Details

4.2.1 Making Use of Requeue PI

The changes needed to the glibc implementation of
the pthread_cond* functions to make use of re-
queue PI are straight forward. Prior to issuing the
system call, they now check the mutex associated
with the condvar to see if the PI attribute has been
set (PTHREAD_PRIO_INHERIT). If so, pthread_cond_
wait() will use FUTEX_WAIT_REQUEUE_PI, rather
than FUTEX_WAKE for all the waiters as was done pre-
viously, as shown in line 9 of Listing 8. The reader
will recall that the mutex has been acquired in the
kernel upon a successful return from FUTEX_WAIT_

REQUEUE_PI. Therefore, the updated implementa-
tion skips the call to lock the mutex in the PI case,
as shown in lines 16-17 of Listing 8.

1 cond wait (cond , mutex)
2 {
3 l o ck (cond−> data . l o c k) ;
4 unlock (mutex) ;
5 do {
6 unlock (cond−> data . l o c k) ;
7 i f (mutex−>kind == PI)
8 fu t ex (cond−> data . f u t ex ,
9 FUTEX WAIT REQUEUE PI) ;

10 else

11 fu t ex (cond−> data . f u t ex ,
12 FUTEX WAIT) ;
13 l o ck (cond−> data . l o c k) ;
14 } while (. . .)
15 unlock (cond−> data . l o c k) ;
16 i f (mutex−>kind != PI)
17 l o ck (mutex) ;
18 }

Listing 8: PI-aware pthread cond wait pseudo-code.

Similarly, pthread_cond_broadcast() will use
FUTEX_CMP_REQUEUE_PI, as opposed to FUTEX_CMP_

REQUEUE, as shown in lines 5-10 of Listing 9.

With these changes in place, user applications us-
ing PI mutexes with condvars can now benefit from
the kernel implementation of requeue PI. The mutex
will be acquired in priority order upon signaling the
waiters of a condvar and scheduling overhead will be
reduced.

1 cond broadcast (cond , mutex)
2 {
3 l o ck (cond−> data . l o c k) ;
4 unlock (cond−> data . l o c k) ;
5 i f (mutex−>kind == PI)
6 fu t ex (cond−> data . f u t ex ,
7 FUTEX CMP REQUEUE PI) ;
8 else

9 fu t ex (cond−> data . f u t ex ,
10 FUTEX CMP REQUEUE) ;
11 }

Listing 9: PI-aware pthread cond broadcast pseudo-
code.

4.2.2 PI-Aware Condvars

Making use of the new futex operations is just the
first part of making condition variables fully PI-
aware. The internal lock protecting the condvar’s
state is a simple futex, and therefore not PI-aware.
As stated in Section 1, this can lead to an unbounded
priority inversion. Consider a scenario where a low
priority task acquires the internal condvar lock as
part of a pthread_cond* operation but is preempted
before it can release the lock. Any high priority task
that attempts an operation on the same condvar will
now be subjected to an unbounded priority inversion
[5]. The fix is to use the PI futex APIs for handling
the internal lock if the associated mutex has the PI
attribute set, as shown in Listings 10 and 11.

1 l o ck (cond)
2 {
3 mutex = cond−>mutex ;
4 i f (mutex−>kind == PI)
5 fu t ex (cond−> data . l o ck ,
6 FUTEX LOCK PI) ;
7 else

8 fu t ex (cond−> data . l o ck ,
9 FUTEX WAIT) ;

10 }

Listing 10: PI-aware condvar lock() pseudo-code

1 unlock (cond)
2 {
3 mutex = cond−>mutex ;
4 i f (mutex−>kind == PI)
5 fu t ex (cond−> data . l o ck ,
6 FUTEX UNLOCK PI) ;
7 else

8 fu t ex (cond−> data . l o ck ,
9 FUTEXWAKE) ;

10 }

Listing 11: PI-aware condvar unlock() pseudo-code

Conceptually, these changes are relatively triv-
ial. Indeed, their implementation in the C language

versions of the respective files was trivial. However,
C libraries being what they are, that was only part
of the solution. Glibc maintains optimized hand-
written assembly versions of all of these functions.
These implementations were also updated accord-
ingly. The interested reader is referred to the glibc
libc-alpha mailing list and source repositories for de-
tails [4].

5 Results

With the solution in place, the prio-wake test passes
consistently, with or without the associated mutex
held across the pthread_cond_broadcast() call, as
seen in line 12 of Listing 12. This ensures determin-
istic priority ordered wake-up and acquisition of the
associated mutex by the waiting threads.

0 20000 40000 60000 80000 100000 120000
Time (ms)

0

1000

2000

3000

4000

5000

6000

n
r_

sw
it

ch
e
s

nr_switches over 100x prio-wake run

IDLE
REQUEUE_PI

WAKE_ALL

FIGURE 8: Number of scheduler switches
over time during a consecutive run of 100
prio-wake tests in which the associated mu-
tex is not held over the broadcast. The IDLE
dataset is a sampling of the system while idle
for comparison.

In addition to functional correctness, the ordered
wake-up and lock acquisition also have performance
benefits by eliminating the scheduling overhead the
thundering herd imposes in the “wake all” approach.
Figure 8 plots the number of scheduler switches 8

that occur over the course of a run of 100 consecutive
prio-wake tests, with the associated mutex unlocked
across the call to pthread_cond_broadcast(). The

WAKE_ALL run experiences many more switches than
the REQUEUE_PI run, which sees only a few more
than the IDLE run. Over the course of the 102 sec-
ond test, the WAKE_ALL run sees approximately 3,000
more switches than the REQUEUE_PI run, about 30
switches per second. As each iteration takes approx-
imately one second to complete, it follows that in
order to signal eight threads (one per CPU) of an
event and have them acquire a shared mutex, the
“wake all” approach requires 30 additional switches.
The unlocked case is the more difficult one to pass
using the “wake all” method as woken threads will
not be hindered by the signaling thread holding the
mutex, and will race only amongst themselves to re-
turn to userspace and acquire the lock, as depicted
in Figure 3. Over the 100 runs, the WAKE_ALL run
experienced 100% failure as compared to 0% for the
REQUEUE_PI run 9.

The kernel patches have been available in the
PREEMPT RT [7] tree since as early as 2.6.29.1-rt5
and is currently destined for the upcoming mainline
2.6.31 release. At the time of this writing, the x86 64
version of the new futex operations patch is present
in glibc CVS. The remaining glibc patches are still
under development, and should be available in the
near future.

The system used for all test results reported here
was an 8-way x86 64 system. The results were col-
lected on a Linux 2.6.31-rc6-rt4 kernel.

6 Acknowledgements

We would like to extend our thanks to Thomas
Gleixner for his initial conceptual designs and fa-
cilitating the inclusion of the the kernel and glibc
patches into their respective upstream repositories.
Thanks to Peter Zijlstra for his efforts to reduce
overhead related to accessing user pages in the futex
code as well as his sound advice at various points
throughout the development process. Will Schmidt,
Paul McKenney and Venkateswararao Jujjuri (JV)
provided early reviews which were critical to making
this paper more legible than it would have been oth-
erwise. Thanks to IBM for the resources, both hard-
ware and person-hours, required to complete this
project. Finally, we are indebted to our families for
their sacrifices to enable us to pursue this effort.

8As reported by the /proc/sched_debug nr_switches field.
9At the time of this writing, the performance benefits are not observed with the associated mutex held over the

pthread cond broadcast() call. This is considered to be a flaw and is expected to be resolved as soon as possible. The functional
results remain intact however.

1 # LD LIBRARY PATH=/t e s t /dvhart / l i b / x86 64 . / pr io−wake
2

3 −−−−−−−−−−−−−−−−−−−−−−−
4 Pr i o r i t y Ordered Wakeup
5 −−−−−−−−−−−−−−−−−−−−−−−
6 Worker Threads : 8
7 Cal l ing pthread cond broadcast () with mutex : LOCKED
8

9 00000620 us : Master thread about to wake the workers
10

11 Cr i t e r i a : Threads should be woken up in p r i o r i t y order
12 Resu lt : PASS
13 000000: 00000193 us : RealtimeThread −17617056 p r i 001 s t a r t ed
14 000001: 00000275 us : RealtimeThread −17617552 p r i 002 s t a r t ed
15 000002: 00000323 us : RealtimeThread −17618048 p r i 003 s t a r t ed
16 000003: 00000375 us : RealtimeThread −17618544 p r i 004 s t a r t ed
17 000004: 00000427 us : RealtimeThread −17619040 p r i 005 s t a r t ed
18 000005: 00000479 us : RealtimeThread −17619536 p r i 006 s t a r t ed
19 000006: 00000526 us : RealtimeThread −17620032 p r i 007 s t a r t ed
20 000007: 00000575 us : RealtimeThread −17620528 p r i 008 s t a r t ed
21 000008: 00000666 us : RealtimeThread −17620528 p r i 008 awake
22 000009: 00000679 us : RealtimeThread −17620032 p r i 007 awake
23 000010: 00000689 us : RealtimeThread −17619536 p r i 006 awake
24 000011: 00000706 us : RealtimeThread −17619040 p r i 005 awake
25 000012: 00000716 us : RealtimeThread −17618544 p r i 004 awake
26 000013: 00000725 us : RealtimeThread −17618048 p r i 003 awake
27 000014: 00000735 us : RealtimeThread −17617552 p r i 002 awake
28 000015: 00000745 us : RealtimeThread −17617056 p r i 001 awake

Listing 12: Passing prio-wake example.

References

[1] Documentation/pi-futex.txt. Linux kernel documentation, 2.6.31-rc6-rt4.

[2] Documentation/rt-mutex.txt. Linux kernel documentation, 2.6.31-rc6-rt4.

[3] futex - Fast Userspace Locking system call. Linux futex(2) man page, Ubuntu 9.04.

[4] Glibc resources. http://www.gnu.org/software/libc/resources.html.

[5] Internal lock in pthread struct is vulnerable to priority inversion.
http://sourceware.org/bugzilla/show bug.cgi?id=5192.

[6] Linux test project. http://ltp.sourceforge.net/.

[7] Real-time linux wiki. http://rt.wiki.kernel.org.

[8] Real time specification for java. http://www.rtsj.org.

[9] semop, semtimedop - semaphore operations. Linux semop(2) man page, Ubuntu 9.04.

[10] Bovet, D., and Cesati, M. Understanding the Linux Kernel 3rd Edition, 3 ed. O’Reilly Media, Inc.,
November 2005.

[11] Butenhof, D. Programming with POSIX Threads. Addison-Wesley, Boston, MA, USA, 1997.

[12] Drepper, U. Futexes are tricky. http://people.redhat.com/drepper/futex.pdf, August 2009.

[13] Franke, H., Russell, R., and Kirkwood, M. Fuss, futexes and furwocks: Fast userlevel locking in
linux. In Ottawa Linux symposium (2002), pp. 479–789.

[14] Peiffer, P. [patch 2.6.19.1-rt15][rfc] - futex requeue pi implementation (requeue from futex1 to pi-
futex2). http://lkml.org/lkml/2007/1/3/62, 2007.

[15] Rostedt, S. Documentation/rt-mutex-design.txt, 2006. Linux kernel documentation, 2.6.31-rc6-rt4.

