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Abstract

The Linux kernel is mainly used is general-purpose operating system, i.e., in server and/or desktop
environments. During the last years, however, academic institutions and companies showed an increasing
interest in using it for real-time and control applications as well.

However, since Linux has not been designed to be a real-time operating, the best-effort scheduling
policy is not suited to provide high utilization and strong guarantees to time-sensitive tasks.

We present an enhancement of the Linux scheduler through the implementation of the well known
Earliest Deadline First algorithm for real-time tasks, leaving the current behavior of existing policies
unchanged. It is integrated with the latest Linux scheduler, support multicore platforms, it is available
for embedded architectures (like ARM) and can be used with either periodic or aperiodic workloads.

1 Introduction

Linux is a General Purpose Operating System
(GPOS) originally designed to be used in server or
desktop environments. Since then, Linux has evolved
and grown to be used in almost all computer areas.
An important part of Linux is the process scheduler
(or simply the scheduler). This component of the ker-
nel selects which process to execute at any instant of
time, and is responsible of dividing the finite resource
of processor time between all runnable processes in
the system.

During the last years, there has been a consid-
erable interest in using Linux also for real-time and
control, from both academic institutions and com-
panies [15, 16]. Some reasons for this could be the
free availability of its source code, the support for a

great number of architectures, a rich set of already
developed device drivers and the existence of billions
of applications running on it.

Unfortunately, Linux has not been designed to
be a Real-Time Operating System (RTOS), thus
not much attention has been given to real-time is-
sues. Therefore, making a classical real-time feasi-
bility study of the system under development is not
possible, and developers cannot be sure that timing
requirements of tasks will be met under every cir-
cumstance. POSIX-compliant fixed-priority policies
offered by Linux, on the other hand, are not much
sophisticated and often do not suit the specific ap-
plication requirements.
These issues are particularly critical when designing
time-sensitive or control applications (e.g., MPEG
players) for embedded devices like smart-phones. In
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fact, when size, processing power, energy consump-
tion and cost are tightly constrained, you need to
efficiently exploit system resources, and at the same
time meet the real-time requirements of the applica-
tion.

It has to be said that companies exists that
started selling modified versions of the Linux kernel
with improved real-time support [17, 18, 19]. How-
ever, these non-standard versions of Linux are often
non-free, and can not avail themselves of the sup-
port from the huge development community of the
standard kernel.

Therefore, we believe that to be really “gen-
eral”, Linux should also provide enhanced real-time
scheduling capabilities. In this paper, thus, we pro-
pose an implementation of the Earliest Deadline
First (EDF) algorithm [1, 2], the well known real-
time dynamic-priority scheduling algorithm.

The paper is organized as follows: at the be-
ginning an overview of most notable real-time exten-
sions for the Linux kernel proposed in the last decade
is provided. Then, the current Linux scheduler is
explained and the implementation of the proposed
scheduling policy (SCHED EDF) is provided. Last but
not least, our implementation is evaluated and vali-
dated through a tests and experiments on real hard-
ware, and finally, conclusions are driven.

2 Related work

During the last years, research institutions and inde-
pendent developers have proposed several real-time
extensions to the Linux kernel [4]. It must be said
that, none of the extensions described in this section
eventually became part of the official Linux kernel
yet, thus making some of these projects obsolete.

First of all, in [20] we started investigating how
an EDF policy could be implemented as a schedul-
ing class of the new Linux modular scheduling frame-
work, but we concentrated in uniprocessor systems,
while the implementation presented here is multipro-
cessor. Moreover, the focus in [20] was on dealing
with critical section, more than with scheduling it-
self.

Deadline based scheduling is also involved in [21],
an even more recent work. However, what we do
in there is to assign deadlines to fixed-priority task
groups in the sched rt class. Thus, the group to be
scheduled is chosen by its deadline, while the task to
be scheduled from within the group is selected ac-
cording to its priority. On the other hand, in this
work, a new scheduling class is utilized, and tasks

have their own deadlines.

2.1 OCERA

A real-time scheduler for Linux 2.4 has been devel-
oped within the OCERA European project, and it is
available as Open Source code [3, 7, 8]. To minimize
the modifications to the kernel code, the real-time
scheduler has been developed as a small patch and
an external loadable kernel module. All the patch
does is exporting toward the module (by some hooks)
the relevant scheduling events.
The approach is straightforward and flexible, but the
position where the hooks have to be placed is real
challenge, and it made porting the code to next re-
leases of the kernel very hard.

2.2 AQuoSA

The outcome of the OCERA project gave birth to
the AQuoSA [23] software architecture. It basically
consists on the porting of OCERA kernel approach
to 2.6 kernel, with a user-level library for feedback
based scheduling added.
Unfortunately, it lacks features like support for mul-
ticore platforms and integration with the latest mod-
ular scheduler [5, 6] and the cgroups filesystem.

2.3 Frescor

A real-time framework based on Linux 2.6 has been
proposed by the Frescor European project [9]. It is
based on AQuoSA and further adds to it a contract-
based API and a complex middleware for specifying
and managing the system performances, from the
perspective of the Quality of Service (QoS) it pro-
vides.
Obviously, it suffers from all the above mentioned
drawbacks as well.

2.4 LITMUS-RT

LITMUS-RT [10] is a plugin based scheduling frame-
work with a wide variety of implemented real-time
scheduling algorithms. The aim of the project, at
least for now, is the evaluation of multiprocessor
scheduling algorithms and synchronization protocols
from research point of view.
Moreover, it only runs on Intel (x86-32) and Sparc64
architectures (i.e., no embedded platforms, the one
typically used for industrial real-time and control).



2.5 RTLinux, RTAI, Xenomai

The so called interrupt abstraction approach [4] ac-
tually allows to schedule even hard real-time tasks
on Linux. It consists of having an abstraction layer
of virtual hardware below the Linux kernel, resulting
in some kind of multithreaded RTOS with standard
Linux and all its processes running as the lowest pri-
ority thread.
This approach has been successfully implemented in
several existing frameworks, the most notable exam-
ples of which are RTLinux [12], RTAI [11] and Xeno-
mai [13].
It is an efficient solution, as it allows to obtain very
low latencies, but is also invasive, and, often, not all
standard Linux facilities are available to tasks run-
ning with real-time privileges.

3 Modular Scheduling

Framework

Recently (since release 2.6.23) the previous O(1)
Linux scheduler has been replaced by a completely
new modular scheduler implemented by Ingo Mol-
nar [5, 6]. In this section we will try to point out
some of its more important characteristics.

3.1 Scheduling classes

This “new” scheduler has been designed in such a
way to introduce scheduling classes, an extensible
set of scheduler modules. These modules encapsu-
late specific scheduling policies details that the core
scheduler needs not to know. The binding between
each policy and the related scheduler is done through
a set of hooks (i.e., function pointers) provided by
each scheduling class and called by the core sched-
uler.

Currently, Linux comes with two scheduling
classes1:

• sched fair: the “Completely Fair Sched-
uler” (CFS) algorithm, for SCHED NORMAL and
SCHED BATCH policies. The idea here is to run
tasks in parallel and at precise weighted speeds,
in, so that each task receives a “fair” amount
of processor share;

• sched rt: the POSIX fixed-priority real-time
scheduling, for SCHED FIFO or SCHED RR poli-
cies with 99 priority levels.

A (partial) list of the hooks a scheduling class
may provide, by filling them in its own struct

sched class structure, follows:

• enqueue task(...): enqueues a task in the
data structure used to keep all runnable tasks
(runqueue); usually called when the task enters
a runnable state;

• dequeue task(...): removes a task from the
runqueue; usually called when the task stop
being runnable;

• yield task(...): yields the processor for
other tasks to have a chance to be run;

• check preempt curr(...): checks if a task
shall preempt the currently running task;

• pick next task(...): chooses the most ap-
propriate task eligible to be run next;

• put prev task(...): makes a running task no
longer running;

• select task rq(...): chooses on which run-
queue (i.e., on which CPU) a waking-up task
has to be enqueued;

• task tick(...): accounts each periodic sys-
tem tick to the running tasks.

3.2 Limits of current

scheduling classes

Real-time tasks are computational activities charac-
terized, at least, by a worst case execution time and a
timing constraint [2]. These tasks must be executed
by the RTOS in a correct order, so that each one
completes within its timing constraints. A typical
constraint is the deadline, i.e., is the instant the task
execution is required to be completed, otherwise the
results could turn out to be useless.

The default scheduling policies of Linux (i.e.,
SCHED NORMAL and SCHED BATCH cannot provide the
guarantees a time-sensitive application may require.
This is mainly because no concept of timing con-
straint (e.g. deadline) can be associated to a task
in them. In fact, although it is possible to assign a
share of the processor time to a task (or a group of
tasks)2, there is no way to specify that a task must
execute for 20msec within 100msec, as it is possible
with real-time scheduling algorithm, such as EDF.
Moreover, the time elapsed between two consecutive
executions of a task is not deterministic and can not

1actually, a special idle scheduling class also exists to implement the idle task
2CFS act according to a global, fixed period



be bound, since it highly depends on the number of
tasks running in the system at that time.

Even POSIX-compliant fixed-priority policies
(i.e., SCHED RR and SCHED FIFO) diverges from what
the real-time research community refer to as “real-
time” [2, 14]. For instance, as best-effort policies,
they do not allow to assign timing constraints to
tasks. Moreover, it is well known [1] that they pro-
vide lower performances in term of both schedulabil-
ity guarantees [?] and flexibility (e.g., graceful degra-
dation and bounded tardiness), both on uniprocessor
and multiprocessor systems.

4 SCHED EDF: features and

implementation

In this section we present our new scheduling class,
sched edf, implementing the SCHED EDF scheduling
policy. The purpose of this paper is to give as much
details as possible about this first implementation of
the new policy.
As we will point out, thorough experimental eval-
uation to validate, and maybe correct, some of the
design choices we made, is the subject of ongoing and
future work by us.

All the information about the code, together
with links to installation and usage instructions can
be found at http://www.evidence.eu.com/sched edf/

4.1 Main features

Our scheduling class implements the Earliest Dead-
line First (EDF [?]) algorithm and uses the Constant
Bandwidth Server (CBS [22]) to provide bandwidth
isolation among tasks. They both are well known
and discussed in the real-time community, thus we
are not going into too much details of them here, for
space reasons.

This scheduling class has been developed from
scratch, without starting from any existing project,
taking advantage of the modularity currently offered
by the Linux scheduler.

The implementation is aligned with the current
mainstream kernel, and it relies on standard Linux
mechanisms (e.g., control groups) to natively sup-
port multicore platforms and to provide hierarchical
scheduling through a standard API.

4.2 Interaction with existing policies

The addition of our scheduling class to the Linux
kernel does not change the behavior of the existing
scheduling policies, neither best-effort and real-time
ones, as shown in Figure 1).

FIGURE 1: Linux scheduler with
SCHED EDF.

However, given the current Linux scheduler
architecture, there is some interaction between
scheduling classes. In fact, since each class is asked to
provide a runnable task in the order they are chained
in a linked list, “lower” classes actually run in the idle
time of “upper” classes.

We decide to put our new scheduling class,
sched edf, in between the best-effort scheduling
class, sched fair, and the POSIX real-time schedul-
ing class sched rt. This means a ready EDF task
always “win” the struggle for the CPU against a
best-effort task, but always “loose” it against a fixed-
priority POSIX real-time one. This has been done for
the following reasons:

• backward application compatibility and
(POSIX) standard compliance require
SCHED FIFO/RR tasks to run as soon as they
can;

• it may be useful, either for the user or for the
kernel (e.g. during system power down or CPU
offlining), to have an easy way to specify an “al-
ways winner” task, without the need of dealing
with the deadlines that are present in the sys-
tem at that particular instant;

• since EDF is more efficient than fixed-priority
in term of schedulability, it will be easier for it
to achieve high utilization even if it runs in the
idle time of fixed-priority, than the vice-versa;

• real-time analysis techniques already exists to
deal with exactly such scheduling architecture.

It should be easy to notice that this solution has
the drawback that EDF tasks will suffer from the



interference of fixed-priority tasks, but it has to be
said that:

• the amount of interference coming from the
user’s SCHED FIFO/RR tasks can be taken into
account given the techniques cited before;

• the amount of interference coming from Linux
system SCHED FIFO/RR tasks can be accounted
for as system overhead;

• in recent kernels, the bandwidth the whole
sched rt scheduling class occupies, can be
forced to stay below a certain limit 3.

Experimental evaluation of the overhead and the
experienced latency under different load conditions,
the actual system schedulability and predictability,
etc., is deferred to future works.

4.3 Multiprocessor scheduling sup-

port

In the real-time and scheduling community global
and partitioned multiprocessor scheduling schemes
exists. In global scheduling each task may be picked
up and run on each CPU; in partitioned scheduling
a task has its own CPU where it is always scheduled.
Discussing advantages and drawbacks of both, is not
in scope here, let us just say that the global case is
usually thought and implemented by means of one
global ready queue for all the CPUs, partitioning by
one ready queue per CPU.

The way Linux deals with multiprocessor
scheduling is often called distributed runqueue, which
means each CPU as its own ready queue, as in par-
titioning; however, tasks can, if wanted or needed,
migrate between the different queues. This adds the
overhead of migrations but, at least, make it easy to
pin some task on some processor (scheduling affinity)
and, more important, addresses the serious locking
scalability issues that –it is easy to figure out– con-
cerns the single-runqueue solutions.

We are interested, for our new scheduling class,
in a general solution, i.e. a globally scheduled system
in which it is easy to ask one or more tasks to stay
on a pre-specified CPU (or set of CPU). Therefore,
the easiest and simplest way of achieving this is to go
for the same approach of Linux itself, which means:

• we have one runqueue for each CPU, imple-
mented with a red-black tree, for efficient ma-
nipulation;

• we migrate the tasks among the runqueues in
a way such that:

– we always try to have, on an m CPU sys-
tem, the m earliest deadline ready tasks
running on the CPUs;

– we always respect the affinity the tasks
specify.

Therefore, if the affinity of a particular task is equal
to only one precise CPU, that task will never be mi-
grated and, when runnable, it always run only on
it. Thus, it is sufficient that each EDF task in the
system has its affinity correctly set, to achieve what
we called partitioned scheduling, with very few over-
head.

4.4 Tasks scheduling

The sched edf scheduling class does not make any
restrictive assumption on the characteristics of its
task, thus, it can handle:

• periodic tasks, typical in real-time and control
applications;

• sporadic tasks, typical in soft real-time and
multimedia applications;

• aperiodic tasks.

A key feature of task scheduling in this schedul-
ing class is that temporal isolation is ensured. This
means, the temporal behavior of each task (i.e., its
ability to meet its deadlines) is not affected by the
behavior of any other task in the system. In other
words, even if a task misbehaves, it is not able to ex-
ploit larger execution time than it has been allocated
to it and monopolize the processor.

In fact, each task is assigned a budget
(sched runtime) and a period, considered equal to
its deadline (sched period). This means the task is
guaranteed to execute for an amount of time equal
to sched runtime every sched period (task utiliza-
tion or bandwidth). When a task tries to execute
more than its budget it is slowed down, by stopping
it until the time instant of its next deadline. When,
at that time, it is made runnable again, its budget is
refilled and a new deadline computed for him. This
is how the CBS [22] algorithm works, in its hard-
reservation configuration.

However, although the CBS algorithm is very ef-
fective to encapsulate aperiodic or sporadic –real-
time or non real-time– tasks in a real-time EDF

3which is something we are trying to improve as well [21]



scheduled system, it imposes some overhead to “stan-
dard” periodic tasks. Therefore, we make it possi-
ble for periodic task to specify, before going to sleep
waiting for the next activation, the end of the cur-
rent instance. This avoid them (provided they be-
have well!) being disturbed by the CBS.

4.5 API for tasks

The existing system call sched setscheduler() has
not been extended, because of the binary compati-
bility issues that modifying its struct sched param

parameter would have raised for existing appli-
cations. Therefore, another system call, called
sched setscheduler ex(...) is implemented. It
allows to assign or modify the scheduling param-
eters described above (i.e., sched runtime and
sched period) for tasks running with SCHED EDF

policy. The system call has the following prototype:

#define SCHED EDF 6

struct sched param ex {
int sched priority; /* Backward compliance */

struct timespec sched edf period;

struct timespec sched edf runtime;

};

int sched setscheduler ex(pid t pid, int policy,

struct sched param2 *param);

For the sake of consistency, also
sched setparam ex(...) and sched getparam ex(...)

have been implemented.

On the other hand, we did not add any sys-
tem call to allow a periodic task to specify the
end of its current instance, and the semantic of
sched yield(...) for EDF tasks has been modi-
fied for that purpose.

4.6 API for task groups

The scheduling class has also been integrated with
the control groups mechanism in order to allow the
creation of groups of tasks with a cap on their total
utilization.

Therefore, the cgroups interface now pro-
vides two new entries, cpu.edf runtime us and
cpu.edf period us. These files are created once
the cgroup filesystem is mounted, to get and set the
group bandwidth. In fact, a group has not actual
budget or period/deadline, and these values are used
to derive the utilization of the group. Consistency
check is run when:

• a task is created or moved inside a group,

• the parameters of a task (if inside a group) are
modified,

• a group is created or moved inside another
group,

• the parameters of a group (if inside another
group) are modified,

to check if the cumulative utilization of tasks and
groups is below the one of the group that contains
them (i.e., their parent group).

On multicore platforms, tasks and task
groups can be moved among different pro-
cessors using existing Linux mechanisms, i.e.,
sched setaffinity(...) for tasks (either threads
or processes), and cpuset.cpus for task groups.

5 Evaluation

Given the preliminary status of this work we report
here only a very simple example showing our new
policy at work.

First of all we modified the schedtool package to
make it use the new sched setscheduler ex(...)

system call, and thus be able to set SCHED EDF as
the scheduling policy of a task, with proper budget
and period. We then ran a simple yes Linux pro-
cess as a SCHED EDF task with 100ms sched period

and 20ms sched runtime. The actual schedule is
obtained by using the sched switch tracer from the
ftrace infrastructure, recently introduced into the
kernel. Finally, the output has been converted to
VCD format by means of the analyze 4 program.
Thus, we can use GtkWave to visualize what hap-
pens in the system. Notice that all the tools and
programs mentioned above, are freely available and
easy to install and use.

We can see what happens on the CPU where our
SCHED EDF yes process is being run in Figure 2).

Green “low” lines correspond to task execution,
while yellow “high” ones to task being not runnable.
Red vertical lines happens when a task become ready
to run, and thus dark red rectangle means the task is
ready but not running, usually because some other
task of higher priority or scheduling class is keep-
ing it out from the CPU. The yes EDF task is at
the second line in the Figure; other lines represent
other tasks running on the same CPU, as shown in
the Signals box on the left. All these tasks but

4http://www.osadl.org/Visualize-the-temporal-relationship-of-L.taks-visualizer.0.html



FIGURE 2: Scheduling trace with a
SCHED EDF task

yes, either being user or system tasks, run with
SCHED NORMAL as their scheduling policy.

Looking at the figure we notice at least the fol-
lowing:

• our sched edf task runs as soon as it become
runnable, preempting or preventing to be run
all the best-effort tasks;

• thanks to the bandwidth isolation enforcing
mechanism, even if it would like to run con-
tinuously, it is allowed to only exploit its full
sched runtime every sched period, i.e., 20ms
every 100ms.

6 Conclusions

In this paper, we presented an implementation of
the Earliest Deadline First (EDF) algorithm for the
Linux kernel.

With respect to similar work proposed in the
past, our implementation takes advantage of the
modularity offered by the new Linux scheduler, leav-
ing the current behavior of existing policies un-
changed. The new scheduling class is integrated with
the latest Linux scheduler, and relies on standard
Linux mechanisms (e.g., control groups) to natively
support multicore platforms and to provide hierar-
chical scheduling through a standard API.

Our implementation does not make any restric-
tive assumption on the characteristics of the task.
Thus, it can handle periodic, sporadic and aperiodic
tasks. Another interesting feature of this schedul-
ing class is the temporal isolation among the tasks
handled. The temporal behavior of each task (i.e.,
its ability to meet its deadlines) is not affected by
the behavior of the other tasks: if a task misbehaves
and requires a large execution time, it cannot jeopar-
dize the processor. Thanks to the temporal isolation

property, each task executes as it were on a slower
dedicated processor, so that it is possible to provide
real-time guarantees on a per-task basis. Such prop-
erty is particularly useful when mixing hard and soft
real-time tasks on the same system.
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