
Towards Linux as a Real-Time Hypervisor

Jan Kiszka
Siemens AG, Corporate Technology, CT SE 2

Otto-Hahn-Ring 6, D-81739 Munich

jan.kiszka@siemens.com

Abstract

Combining virtualization and real-time is important for an increasing amount of use cases, from em-

bedded system to enterprise computing. In this paper, we will analyze the real-time capabilities of Linux

as a hypervisor when using KVM and QEMU. We will furthermore introduce and evaluate a paravirtual

scheduling interface that helps resolving priority inversion problems in embedded virtualization scenarios.

1 Introduction

Combining virtualization and real-time requirements
is so far primarily a topic in embedded systems.
In this domain, a general purpose operating system
(GPOS) often needs to be executed aside a real-time
operating system (RTOS). A hypervisor may then be
used to manage shared resources and isolate the OSes
from each other. Such architectures can be found
in industrial control systems where the RTOS takes
over the time-critical control of a machine while the
GPOS runs, for example, the visualization software.
Futher examples are single-processor smartphones
where an RTOS is used to manage critical tasks of
the radio communication while a GPOS hosts the
typical set of mobile phone applications.

With the increasing importance of real-time in
enterprise computing scenarios, the overlap with vir-
tualization becomes larger as well. In the absence
of highly demanding real-time requirements, virtua-
lization is already used for server consolidation and
load balancing. Thus, improving real-time capabil-
ities of virtualization solutions will extend their us-
ability also into the real-time enterprise domain.

But the gap between embedded real-time and en-
terprise virtualization is still large. In many embed-
ded scenarios, specialized hypervisors are used that
have a reduced feature set, are mostly statically con-
figured, but can provide better performance and re-
quire less resources than full-featured versions. Hy-
pervisors from the enterprise domain focus on good
average performance as well as resource control at a
comparatively high level. They manage significantly
larger resource sizes and include mechanisms to dy-

namically shift load between physical nodes.
Linux as an operating system has already demon-

strated that it can adopt to a very broad range of use
cases: from low-end embedded up to large-scale ma-
chines with thousands of CPU cores [1]. In the real-
time domain, Linux is currently approaching more
demanding use cases with the PREEMPT-RT patch
[2, 3]. And Linux includes built-in virtualization sup-
port with the KVM subsystem [4, 5]. Consequently,
one question is what quality of service could already
be achieved by combining these technologies–which
furthermore include the advantages of open source,
thus are also easily adaptable to specific require-
ments whenever needed. A realistic question is not
if Linux can solve everthing, but how large the share
in use cases is that it can cover and how it can be
gradually extended so that all Linux users benefit.

2 Linux as Hypervisor

Using the Linux OS itself as a hypervisor requires
two components: A kernel driver and a user space
application. Both will be briefly introduced in the
following.

2.1 Kernel-Based Virtual Machine

The Kernel-Based Virtual Machine (KVM) is a
Linux device driver whose main task is to manage un-
privileged access to virtualization features that can
only be used directly by the privileged kernel. It was
originally developed to grant this access to Intel’s
and AMD’s x86 hardware-based virtualization exten-
sions, but meanwhile provides essentially the identi-

cal interface on ia64, s390, and PowerPC hosts–even
though not all of them provide comparable hardware
virtualization support.

Another important task of KVM is to provide
fast virtualization for frequently accessed guest de-
vices. So far, interrupt and timer controllers are
available as kernel-hosted models. The advantage
is that no consultation of the controlling user space
process is required if a guest accesses any of these de-
vices, which reduces the virtualization overhead. In-
kernel support for paravirtualized network adapters
is currently under development.

KVM is a so-called type-2 hypervisor [6], that
is it makes use of the host OS for tasks like
setup/cleanup, scheduling, native interrupt and
memory management etc. For this reason, the ex-
ecution model of KVM is very simple: A Linux
user space process acting as a hypervisor can request
to create and configure a virtual machine (VM) by
opening the KVM character device and issuing a se-
ries of IOCTLs. This VM shares the host memory
map with its controlling process, while the hyper-
visor can freely configure the mapping between the
VM’s physical and its own virtual memory.

The hypervisor process can furthermore request
to create virtual CPUs within the VM. Given a guest
CPU state, they can then execute arbitrary guest
code in a confined environment. Any guest activity
that cannot be handled by the host CPU’s virtual-
ization extension will trigger an exit from the virtual
CPU (VCPU) execution environment. If the KVM
kernel code is not able to handle the exit internally,
for example by swapping in a host memory page that
the guest has requested by accessing a virtual page,
the exit event is propagated to the user space hyper-
visor.

The execution context of the VCPU is implic-
itly defined by the user space hypervisor: It invokes
the VCPU execution request from within one of its
threads, and KVM preserves this scheduling context
while running the guest code. Thus, if the Linux host
scheduler decides to switch out a hypervisor thread,
it is the corresponding guest CPU which is effectively
scheduled out. The hypervisor process and/or the
system administrator can therefore apply standard
means at the level of threads, processes, users or
control groups to influence the scheduling of virtual
machines as well as further host services.

Guest exits also take place on asynchronous host
events, foremostly interrupts. As soon as KVM has
restored the host OS context, it re-allows host inter-
rupt processing, thus the corresponding Linux inter-
rupt handler is able to run. If the interrupt handler
creates the need to reschedule, KVM detects this
and invoke the corresponding service that possibly

switches to a different host task.

2.2 QEMU

QEMU [7] is a fast CPU and peripheral hardware
emulator. Its emulation does not depend on specific
host features, that is it also works across architec-
tures. The KVM project chose QEMU as the foun-
dation for its user space hypervisor as it already came
with most of the additionally required infrastructure
like I/O device emulation.

KVM’s QEMU version basically replaces the
CPU emulation by the hardware-assisted execution
provided by the kernel driver. It furthermore splits
the single-threaded execution model of QEMU into
VCPU threads and a main I/O processing loop, en-
abling more scalable SMP virtualization. As the
QEMU core code is not yet prepared for multi-
threaded execution, a global lock protects any access
to the device emulation layer. Thus, only one VCPU
or the I/O main loop may query or modify emulated
devices of a virtual machine at the same time.

The KVM project also adds asynchronous I/O
(AIO) support to QEMU. As Linux’s native AIO im-
plementation performs worse than a pthread-based
approach, QEMU gained AIO via a thread-pool: for
each AIO request a user space thread is spawned or
obtained from the pool that executes the request and
then signals the completion to the main I/O thread.

Although the upstream QEMU version mean-
while includes KVM support, we developed our mod-
ifications only for KVM’s QEMU branch [8, commit
f2593a0] as it includes some required features that
have not yet been merged into upstream.

3 Prioritizing QEMU/KVM

A straightforward approach to improve guest respon-
siveness over QEMU/KVM is to raise the priorities
of QEMU’s threads and lift them into a real-time
scheduling class. This comes with the risk of starv-
ing host services that the guest may indirectly busy-
wait upon. For example, the guest could issue an
I/O request that is handled asynchronously by the
host, but requires completion within the context of
non-real-time service like the kernel’s event or AIO
thread.

This risk can mitigated by avoiding CPU over-
commitment, that is running less VCPUs than real
processor cores exist. Furthermore, Linux comes
with a real-time throttling mechanism [9] that re-
stricts the CPU slice of all real-time tasks in the host
system. The latter approach, however, can result in
very low performance as the guest system consumes
a lot of CPU time without making relevant progress.

3.1 Realization

While QEMU’s main I/O thread and its VCPU
threads could also be adjusted after start-up via
chrt, its AIO thread pool grows and shrinks dynam-
ically. Therefore a QEMU extension was required
to establish a stable prioritization of all involved
threads. We defined a new command line switch for
QEMU:

-rt maxprio=prio[,policy=ff|rr|ts]

[,aioprio=prio][,aiopolicy=ff|rr|ts]

If aioprio and aiopolicy are omitted, the
scheduling policy is applied to all existing and fu-
ture threads of the QEMU process. QEMU’s main
thread and its AIO threads then gain the specified
maximum priority, while VCPU threads will use the
next lower priority level. This ensures that a spin-
ning guest cannot starve itself from receiving I/O
events that are routed through those threads. How-
ever, if asynchronous I/O is not considered most im-
portant for a guest, the priority and policy of corre-
sponding completion threads can be separately spec-
ified. The effect is discussed in Section 3.3.

We furthermore added

mlockall(MCL_CURRENT | MCL_FUTURE);

in case a real-time scheduling class is selected. This
prevents any swapping of QEMU’s process mem-
ory, including guest pages, and avoids lazy map-
ping. While mlockall and memory overcommitment
are generally not compatible, real-time requirements
deny the latter in most cases anyway.

A further real-time enhancement for QEMU con-
cerned switching mutexes used for synchronizing I/O
handling to the priority inheritance protocol. The
impact of this change, however, can be considered
minor at this point, as it is pointed out in Section 6.

3.2 Test Setups

Our test setup consisted of a host system with
an Intel dual-core processor (Core2 T5500 at 1.6
GHz) with 2 GB of RAM. Host as well as guest
systems were based on OpenSUSE 11.1. We
started our evaluation with a host kernel built
out of KVM’s git tree [10, commit 0b972aa],
which basically generated a 2.6.31-rc4 kernel. We
enabled CONFIG PREEMPT and CONFIG PREEMPT RCU

and disabled CONFIG ACPI PROCESSOR for best la-
tencies. Tracing facilities were built in, but
remained disabled during latency tests (echo 0

> /proc/sys/kernel/ftrace enabled, echo 0 >

/sys/kernel/debug/tracing/tracing enabled).

To limit the size of the test matrix, we decided
to focus on a single real-time aspect in the follow-
ing evaluations: the latency of timed high-priority
user space threads in the guest system. For measur-
ing this latency, we used cyclictest from the rt-test
project [11, v0.50] with the following parameters: -m
-n -p 99 -l 1000000 -h 100000 -q, that is a 1
ms periodic nanosleep test over 1 million iterations.
As our kernel configuration allowed both host and
guest system to use the native TSC as clock source,
we were able to rely on the measurement results ob-
tained within the guest. Moreover, our interest in the
latency distribution was stronger than in a reliable
upper bound for the worst case. We therefore ran
all tests only for 15 minutes, which is typically not
enough to obtain maximum latencies but sufficient
to compare distributions.

The guest kernel was kept identical for all tests:
2.6.29.6-rt23 plus paravirtual scheduling patches for
Linux guests that are introduced in Section 5. The
latter extensions were always enabled as Linux dis-
ables them automatically during boot-up if the hy-
pervisor does not provide this feature.

QEMU was started with the parameters

qemu-system-x86_64 -m 512 OpenSuse_64.raw \

-nographic -serial /dev/null -net nic \

-net user,hostfwd=::2222-:22

that is using 512 MB RAM, a raw disk image and no
local console. Instead we controlled the guests via a
forwarded SSH connection. The reasons for choosing
a raw image over QEMU’s QCOW2 disk format and
avoiding local graphic or even serial console emula-
tions is discussed in Section 6.

The tests on PREEMPT-RT host kernels re-
quired us to bind prioritized QEMU to the second
core of our host CPU as we otherwise faced live-
locks during boot-up. We did not analyze the reason
for this in further detail, but instead decided to es-
tablish this CPU binding consistently for all tests.
The binding to the second core was not only applied
to the QEMU process but also to the load applica-
tions as well as the host’s disk interrupt. A positive
side-effect of moving the tests was that we were able
to avoid occasional latency peaks of a few hundred
microseconds due to system management interrupts
(SMI) which apparently only hit the first core on our
platform.

We defined two load applications that were run-
ning in parallel in endless loops during the tests:
bonnie 1.4 (as provided by OpenSUSE 11.1) was ex-
ecuted with -y -s 2000 to stress the I/O subsys-
tems. Furthermore, the cache calibrator [12] was
run with 1660 4M /tmp/calibrator.log, that is a
4 MB RAM test area to stress memory caches. For

all tests, the calibrator load stayed on the host as the
intended cache pollution can be triggered from both
host and guest domain equally well.

3.3 Evaluation

To evaluate the effect of raising QEMU’s thread
priorities, we first measured the latencies natively
achievable with cyclictest on the host. For this test,
the bonnie load ran on the host, and no QEMU in-
stance was started. Figure 1 shows the result for
the CONFIG PREEMPT host kernel we used in this first
round. Note that the axes in all graphs are logarith-
mically scaled.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Host latency on 2.6.31-rc4

Maximum: 82555 µs

Average: 89 µs

FIGURE 1: Host Latency

Next we measured the guest latency without any
QEMU prioritization. Bonnie now ran inside the
guest. In Figure 2, the difference to the host latency
is visible in form of a shifted frequency maximum
and a much higher probability of multi-millisecond
latencies. In fact, the selected upper bound for the
histogram of 100 ms did no catch the maximum la-
tencies. Clearly, this setup is unsuited for latency
sensitive guest load.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.31-rc4, -rt maxprio=0

Maximum: 99999 µs

Average: 5216 µs

FIGURE 2: Unprioritized Guest Latency

We then applied SCHED FIFO with a priority of
98 for I/O and 97 for VCPU threads on QEMU. The
result is depicted in Figure 3: the average latency
dropped significantly.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.31-rc4, -rt maxprio=98

Maximum: 43328 µs

Average: 195 µs

FIGURE 3: Prioritized Guest Latency

In the aim to reduce the I/O load impact on our
test scenario, we moved QEMU’s AIO threads out of
the real-time scheduling class again. Figure 4 visual-
izes that this kept the overall distribution shape but
reduced the probability of high or low latencies.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.31-rc4, -rt maxprio=98,aioprio=0

Maximum: 26480 µs

Average: 117 µs

FIGURE 4: Lowered AIO Priority

Processing guest originated I/O load, even if
handled asynchronously, apparently contributes to
excessive latencies in cyclictest. To confirm this as-
sumption, we moved the bonnie test back on the
host. This roughly resulted in the same latency dis-
tribution as in the previous experiment, see Figure 5
.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest latency on 2.6.31-rc4, -rt maxprio=98, host I/O load

Maximum: 72989 µs

Average: 130 µs

FIGURE 5: I/O Load Moved to Host

4 PREEMPT-RT hosting

In the next step, we switched the host to the same
PREEMPT-RT kernel that was already in use for
the guest system. The aim was to evaluate if the
I/O-related priority inversions we found on a stan-
dard kernel are caused by QEMU/KVM itself or by
the host kernel not respecting priorities properly in
all cases.

4.1 Priority Assignment

Selecting the maximum priority of QEMU under
PREEMPT-RT has to be done carefully in order to
avoid livelocks. A Linux guest, for example, per-
forms a timer check during boot-up, busy-waiting
for timer interrupts to arrive. On the host side, these
interrupts flow from the timer IRQ handler via the
hrtimer kernel thread to QEMU’s I/O thread and
finally to the VCPU. If the hrtimer thread is not
given a higher priority than QEMU, the guest will
spin endlessly, preventing any timer IRQ delivery.
As our test setups focus on guest timer IRQ latency,
we lifted hrtimer processing above any others inter-
rupt threads.

chrt -p -f 99 ‘pgrep hrtimer/1‘

4.2 Evaluation

Again we measured the timer latency via cyclictest
on the host first, running bonnie and calibrator as
load. Figure 6 shows promising numbers. They indi-
cate that PREEMPT-RT is avoiding priority inver-
sions because of low priority I/O load as far as this
short test can reveal.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Host latency on 2.6.29.6-rt23

Maximum: 70 µs

Average: 6 µs

FIGURE 6: PREEMPT-RT Host Latency

Running QEMU with raised priority on
PREEMPT-RT results in clear worst case latency
improvement over a standard PREEMPT kernel.
Figure 7 depicts this measurement; it corresponds
to Figure 3. On PREEMPT-RT, the latency maxi-
mum moved below 100 µs, and the average latency
dropped by one third.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.29.6-rt23, -rt maxprio=98

Maximum: 3446 µs

Average: 131 µs

FIGURE 7: Guest Latency on PREEMPT-
RT Host

Corresponding to the test shown in Figure 4, we
next dropped AIO priorities to 0. Figure 8 visualizes
the best guest latency distribution we were able to
achieve with our test setup. Here the latency average
drops to only 75 µs, and a maximum latency of less
than 500 µs was observable (again noting that the
test only ran for 15 minutes).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.29.6-rt23, -rt maxprio=98,aioprio=0

Maximum: 437 µs

Average: 75 µs

FIGURE 8: PREEMPT-RT with Lowered
AIO

5 Paravirtualized Scheduling

To fulfill the requirements of real-time tasks running
in a VM, the hypervisor may assign guaranteed re-
source time shares to that VM. All real-time task
requirements must then be fulfillable by granting an
adequate time slice in a predefined scheduling cycle.
Such a static time slice allocation can be impractical
in a highly reactive environment.

Alternatively, the hypervisor may prioritize the
real-time VM over any other VM. This approach is
sufficient as long as the real-time VM only executes
tasks that have a higher importance than any other
task in the system. Otherwise, background jobs in
the prioritized VM may use up all CPU resources of
the host, starving the other VMs. A straightforward
approach to avoid this priority inversion is to give
the hypervisor a hint about the internal states of its
guests. The hypervisor can then adjust the schedule
of the VCPUs accordingly.

Such an approach is already used for resolving ef-
ficiency issues related to guest CPUs waiting on con-
tended spinlocks [13]. Consider one VCPU holding
a spinlock, then being preempted by another VCPU
which starts to spin on the very same lock. With-
out any knowledge of the guest state, the hypervi-
sor can only keep the second VCPU running until
it consumed its time slice. But given some infor-
mation that the second VCPU is currently spinning
on a lock, the hypervisor can instead grant the host
CPU to the first VCPU that is able to make progress
on its jobs. Moreover, there is a probability that this
VCPU will have released the spinlock the next time it
is preempted by the second VCPUs. Thus, the over-
all efficiency increases as less CPU time is burned
unproductively.

Today this additional information about spin-
lock contentions can only be provided by the guest
OS itself. Linux introduced paravirtual spinlock op-
erations for this purpose. These replace the na-
tive spinlock code when Linux detects that it run-
ning over a hypervisor which supports an alternative
mechanism. Currently only Xen makes use of them
[14]. Upcoming Intel and AMD CPUs will include
hardware-assisted detection of spinlock loops, which
triggers a guest exit so that the hypervisor can sched-
ule a different VCPU.

However, hardware assistance cannot be ex-
pected for solving the scheduling problem of prior-
itized guest CPUs because task scheduling decisions
are done in software on commodity platforms like
x86. Therefore, we need a software interface between
guest and hypervisor to propagate the required infor-
mation, and we have to define an execution model
which both hypervisor and guest OSes can adopt.

5.1 Execution Model

The least common denominator in task scheduling
today is fixed-priority scheduling. We chose POSIX
[15] to define the detailed semantics of the supported
scheduling policy. The following policies are so far
supported by our model:

• SCHED OTHER:
Default time-sharing policy of the host.

• SCHED FIFO:
FIFO policy as defined by POSIX.

• SCHED RR:
Round-robin policy as defined by POSIX.

The hypervisor schedules a VCPU according to
the last scheduling policy and priority that have been
reported by the guest. The available priority range is
[0, pmax]. pmax is a per-VCPU priority limit that the
hypervisor can be configured to. The guest-provided
priority pguest, confined to the range of [0, 99], is
mapped to the host priority p according to

p =
⌊

pguest

pmax

99

⌋

The guest-provided scheduling parameters ap-
ply if no virtual interrupt is waiting to be injected
or is currently processed by the guest. As soon
as the hypervisor marks an interrupt for injection
into a VCPU, it raises the VCPU to pmax. If the
guest’s current scheduling policy is SCHED OTHER, it
is changed to SCHED FIFO, otherwise it is left unmod-
ified. The boost is kept until the guest reports that it
completed interrupt handling on the corresponding
VCPU.

The model also supports one level of interrupt
nesting to allow for accurate non-maskable interrupt
(NMI) virtualization. If a virtual NMI is marked
pending while interrupt boosting is already applied,
the NMI boosting is added. In the following, com-
pletion for both interrupt types has to be reported
by the guest CPU for deboosting it to its base policy
and priority.

5.2 Interface

Our current version of a paravirtual scheduling inter-
face requires two new hypercalls, that is paravirtual
service calls from the guest to the hypervisor:

• Set Scheduling Parameters

This hypercall informs the hypervisor about a
potentially changed scheduling policy and/or
priority for the specified VCPU. The hy-
percall’s argument list consists of the target
VCPU, the new scheduling policy and the new
priority value pguest.

In order to support SMP guest use case where
one VCPU may change the scheduling param-
eters of another VCPU, the hypercall interface
can also be invoked on remote VCPUs. In our
implementation for x86, we use the physical ID
of the emulated local APICs to specify the tar-
get VCPU of this hypercall.

If the target VCPU is the same as the caller
of the hypercall and the VPU currently under-
goes interrupt priority boosting, the boost is
cleared so that no additional Interrupt Done
hypercall has to be issued.

• Interrupt Done

This hypercall has to be invoked by a VCPU
that finished its interrupt handling but will
not invoke Set Scheduling Parameters as no
reschedule is required. No arguments are
passed.

For the integration in QEMU/KVM, we chose
KVM’s own hypercall interface that is based on vm-
call/vmmcall, the vendor-specific x86 instructions to
call from a guest into its hypervisor. Like other KVM
hypercall interfaces, this extension is advertised to
the guest via a flag in KVM’s CPUID leaf.

5.3 Host-Side Realization

The modifications to implement our paravirtual
scheduling interface in QEMU/KVM focused on

KVM’s kernel module. Here we had to provide the
Set Scheduling Parameters hypercall interface which,
after checking and mapping the passed parameters as
well as potentially deboosting the VCPU, finally in-
vokes sched setscheduler() for the Linux task of
the corresponding VCPU.

Standard interrupt handling was also straight-
forward to implement. We hooked into
kvm vcpu kick() and the IOCTLs to trigger an
interrupt or an NMI from user space and applied
the required boosting. Futhermore, we added the
Interrupt Done hypercall interface.

More challenging was the implementation of
VCPU boosting on APIC and PIC timer events. To
avoid a priority boost gap between the host timer
IRQ and the guest IRQ injection, we have to start
the boosting as soon as the host timer fires. KVM
uses Linux hrtimers for setting up guest timer events.
When these timers fire, a KVM-provided handler is
invoked, looks up the target VCPU and sets a flag
that pending timers have to be considered on next
guest entry.1 It is not yet clear at this point if an IRQ
or NMI will finally be injected. Moreover, on non-
PREEMPT-RT kernels, the hrtimer handler runs in
interrupt context, preventing a direct invocation of
sched setscheduler() due to the IRQ-unsafe im-
plementation of that service.

To work around this, we register per-CPU kernel
threads, running at highest host priority, forwarding
our boost requests from the timer handlers to the
Linux scheduler. We additionally introduce an inter-
mediate boosting state, ”timer pending”, that is kept
until KVM decides if the pending timer will raise an
IRQ or an NMI. This boost is not affected by any
guest-originated clearing.

As we rely on the physical APIC ID for looking
up the internal VCPU state during the Set Schedul-
ing Parameters hypercall, our implementation is so
far limited to the standard case of in-kernel guest
IRQ controller emulation. All information we need
is at hand here, while it would otherwise reside only
in user space.

To configure pmax for every VCPU, the new
IOCTL KVM SET MAX PRIO is now available for
KVM’s VCPU file descriptors. User space is ex-
pected to call it during setup of a new virtual CPU.

The QEMU user space part only had to be ex-
tended by the pvsched=on|off option for the -rt

command line switch. It controls whether paravir-
tual scheduling is advertised to the guest and VCPU
maximum priorities are configured to the value de-
fined by maxprio minus one.

1A plain flag is enough as timers always fire on the same host CPU the associated VCPU may run on. Thus, the guest is
either already preempted by the host timer and the flag will simply be evaluated on guest re-entry, or this will happen as soon
as the VCPU resumes (i.e. re-enters guest context).

5.4 Guest-Side Realization

To demonstrate the guest-side implementation we
chose Linux as well. Linux has the advantage of pro-
viding a well-established OS paravirtualization layer
called paravirt-ops. It comes with detection and run-
time deactivation services that allow to reuse a im-
age in the absence of paravirtual scheduling support
without noticeable overhead.

We first introduced a new group of paravirt-ops,
pv sched ops. This group contains two callbacks
that directly map on two previously defined hyper-
visor calls. The wrappers for these calls are;

void cpu_set_sched(int cpu, int policy,

int priority);

void cpu_interrupt_done(void);

cpu set sched() is called from schedule(),
equipped with the parameters of the next task.
Furthermore, we hook into sched setscheduler

where we call cpu set sched() if the manipulated
thread is the current one on its assigned CPU.

cpu interrupt done() is inserted into
nmi exit(), where it is called unconditionally, and
into irq exit(). In the latter case, we only in-
voke the hook if we left interrupt handling and no
reschedule is pending that will deboost the current
CPU anyway. The following code extract shows the
modified function:

void irq_exit(void)

{

...

sub_preempt_count(IRQ_EXIT_OFFSET);

if (!in_interrupt()) {

if (local_softirq_pending())

invoke_softirq();

if (!need_resched())

cpu_interrupt_done();

}

...

}

While the pv sched ops declaration and setup
is currently only available for x86, our hooks were
exclusively added to generic code and, thus, are
portable to other architectures. Moreover, no adap-
tion of this paravirtual interface was required to use
it in a PREEMPT-RT guest. But we were forced
to disable KVM’s paravirtual MMU operations as
their current implementation is incompatible with
PREEMPT-RT’s MMU subsystem changes.

5.5 Evaluation

Ideally, enabling paravirtual scheduling should not
have any negative impact on our test scenarios. It

should not raise the worst case latency nor shift the
average. Realistically, paravirtual scheduling intro-
duces overhead, both related to leaving the guest to
inform the host about priority changes as well as ap-
plying priority changes because of guest activity or
interrupt injections.

To evaluate the impact, we repeated the test
of running cyclictest with raised maximum but low
AIO priority both over the standard as well as the
PREEMPT-RT kernel, this time with pvsched=on.
The results can be found in Figures 9 and 10 that
correspond to Figures 4 and 8, respectively. We
see a slight increase in the average latency on both
host kernels, which is assumed to reflect the par-
avirtual scheduling overhead. Moveover, we see a
higher worst case latency on the standard PRE-
EMPT kernel. But as this increase does not repeat
over PREEMPT-RT and the tests may have not re-
vealed the actual worst case, we consider this a ran-
dom effect.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.31-rc4, -rt maxprio=98,aioprio=0,pvsched=on

Maximum: 31632 µs

Average: 144 µs

FIGURE 9: Paravirtual Scheduling on
CONFIG PREEMPT

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Latency [µs]

Guest Latency on 2.6.29.6-rt23, -rt maxprio=98,aioprio=0,pvsched=on

Maximum: 434 µs

Average: 86 µs

FIGURE 10: Paravirtual Scheduling on
CONFIG PREEMPT RT

6 Analysis

The measurements of the real-time properties
QEMU/KVM can provide for its guest have shown
the following:

• With careful tuning, worst case timer-driven
guest scheduling latencies below 1 ms and av-
erage latencies below 100 µs can be achieved
on a PREEMPT-RT host kernel.

• Parallel I/O activity of the guest has signifi-
cant influence on its overall latency. This can
be mitigated by lowering the priority of AIO
completion handling.

• Our paravirtual scheduling interface can be im-
plemented in a way that no obvious priority
inversions are introduced, while only causing a
slight average latency increase.

We furthermore observed the following effects
during the tests:

• Using QCOW2 images (backing or temporary)
imposes high latencies on the guest, irrespec-
tive of PREEMPT-RT use and careful priority
settings.

• Using local SDL graphic output or applying
high load on the emulated serial port also
causes priority inversions for the guest.

The latter effects are apparently related to the
locking scheme in QEMU user space part. As a
global ”I/O lock” is held while accessing potentially
blocking Linux services, every concurrent access to
QEMU’s I/O device model, for example by a VCPU,
will suffer from the same delay. These bottlenecks
are expected to cause problems also on large SMP
guest systems as the number of parallel I/O access
naturally increases here. On the long-term, QEMU’s
device model will therefore have to be made thread-
safe by applying a more fine-grained and scalable
locking scheme.

Yet hidden behind the above effects and/or not
sufficiently stressed by our tests are delays caused
by significant CPU load inside QEMU’s I/O layer.
For example, the user space networking stack may
face large packet queues or decide to fork-off helper
programs. Such paths require further analysis, even
when a more scalable locking scheme has already
been establish. They could still impact their direct
caller, namely VCPUs issuing synchronous I/O oper-
ations or the main I/O thread dispatching incoming
data from the host.

As the priority inversion effects in user space
dominated our tests, we had no closer look at the

locking situation in KVM’s kernel model. However,
at the time of writing, there were ongoing activities
to establish a more fine-grained locking scheme also
in kernel space [16].

7 Conclusion

In this paper, we analyzed QEMU/KVM regarding
its currently achievable soft real-time capabilities.
We demonstrated that, when carefully tuning the
setup and using PREEMPT-RT on the host, sub-
millisecond scheduling latencies inside guests can be
achieved.

We furthermore introduced a paravirtual
scheduling interface. It overcomes the priority inver-
sion problems on embedded systems that are related
to black-box scheduling of guests. Measurements
demonstrated that our first implementation does
not introduce obvious priority inversions on host or
guest side. It currently comes with an overhead that
results in 15% to 25% higher average latencies and is
expected to have a measurable impact on the overall
system performance as well. This impact should be
reducible by optimizing our approach, specifically
by avoiding unneeded guest exists due to paravir-
tual scheduling updates. We expect improvements
by skipping updates on context switches that do not
change any parameters and by using lazy update
algorithms.

Along with the publication of this paper, we will
also release the source code that was developed for
this research work. Our goal is to evolve the code
base towards mainline acceptability.

References

[1] Top 500, Operating System share
for 06/2009, TOP500.Org, 2009.
http://www.top500.org/stats/list/33/os

[2] Internals of the RT Patch, Steven Rostedt, Dar-
ren Hart, Proceedings of the Linux Symposium,
2007.

[3] Real-Time Linux Wiki, 2009. http://rt.wiki.ker-
nel.org

[4] KVM: The Linux Virtual Machine Monitor, Avi
Kivity et al., Proceedings of the Linux Sympo-
sium, 2007.

[5] Kernel Based Virtual Machine, 2009.
http://www.linux-kvm.org

[6] IBM Systems Virtualization, Version
2 Release 1, IBM Corporation, 2005.
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/

[7] QEMU - open source processor emulator, 2009.
http://www.qemu.org

[8] qemu-kvm git repository, 2009. http://git.ker-
nel.org/?p=virt/kvm/qemu-kvm.git

[9] Real-Time group scheduling, Linux kernel
2.6.31, Documentation/scheduler/sched-rt-
group.txt, 2009.

[10] kvm kernel git repository, 2009. http://git.ker-
nel.org/?p=linux/kernel/git/avi/kvm.git

[11] RT test utils, 2009. http://git.kernel.org/?p=
linux/kernel/git/tglx/rt-tests.git

[12] The Calibrator (v0.9e), Stefan Manegold, 2004.
http://homepages.cwi.nl/ manegold/Calibrator

[13] Preventing Guests from Spinning Around,
Thomas Friebel, Xen Summit 2008.
http://www.xen.org/files/xensummitboston08/
LHP.pdf

[14] [PATCH RFC 0/4] Paravirtual spin-
locks, Jeremy Fitzhardinge, 2008.
http://permalink.gmane.org/gmane.comp.emu-
lators.xen.devel/53239

[15] The Open Group Base Specifications Issue 6,
IEEE Std 1003.1, IEEE and Open Group, 2004.

[16] KVM Mailing List: [RFC] more fine grained
locking for IRQ injection, Gleb Natapov, 2009.
http://permalink.gmane.org/gmane.comp.emu-
lators.kvm.devel/37114

