Myths and Realities of Real-Time Linux Software Systems

Kushal Koolwal
VersaL.ogic Corporation
3888 Stewart Road, Eugene, OR 97402 USA
kushalk@versalogic.com

Abstract

This document addresses some of the differences between real-time and general purpose operating

systems.

This includes an analysis of several common misconceptions including performance issues,

latency, hard vs. soft real-time systems, programming APIs and the software kernel. In addition, there
are suggestions for implementation options to convert Linux to a real-time operating system.

1 What is real-time system?

According to the Real-time Computing FAQ[1], a
real-time operating system (RTOS) is defined as fol-
lows:

“A real-time system is one in which the correct-
ness of the computations not only depends upon the
logical correctness of the computation, but also upon
the time at which the result is produced. If the tim-
ing constraints are not met, system failure is said to
have occurred.”

In other words, a system should be able to per-
form computations deterministically - an important
concept in real-time systems. A system is said to
be deterministic if it’s possible to predict the tim-
ings of its computation precisely, and computations
are logically correct. For example, a real-time sys-
tem should give the result of “242” not only as “4”,
but it should also produce the correct result within
a specified time range.

1.1 Analogy for real-time systems

To understand the concept of a real-time system,
consider the example of an automobile airbag sys-
tem, one of the most critical systems in a modern
car. An airbag should be deployed within a partic-
ular time interval (for example, within 1 second?!)

after the sensors in the car detect a collision.

A car equipped with a real-time computer sys-
tem will always guarantee that the airbag will be
deployed within 1 second, no matter what happens
(see worst-case scenario below). The real-time sys-
tem will put all the non-critical tasks, such as pow-
ering the stereo, switching on the air-conditioning,
activating cruise control, etc. on hold and will im-
mediately deploy the airbag as soon as it receives the
signal from the sensors.

If a car is equipped with a non real-time system,
however, there is no guarantee that the airbag will
be deployed exactly within 1 second after the sen-
sor detects a collision. Such a non real-time system
might deploy the airbag after finishing the request to
activate the cruise control, which happened to come
before the request to deploy the airbag. An airbag
system that deploys even 0.1 second later than the
expected time is as bad as not deploying at all. Why?
Because it might already be too late to save the life
of the passenger. In fact, in real-time systems, a dif-
ference of even 0.000001 second may be important.

2 Metrics of real-time

A number of parameters are required to quantify
real-time systems. To understand these parame-
ters, it is important to define the term “latency.”

IUsually the time interval is much less than 1 sec., but we use 1 sec. for simplicity.

Latency: In computing, latency is “the time that
elapses between a stimulus and the response to it[2].”

Using this definition and our airbag example,
latency in real-time systems is defined as the time
elapsed between the triggering of an event (signal
sent by sensors), requesting a particular task (deploy-
ing the airbag), and the actual task being executed
(airbag deployed). In other words, it is the delay
between an action and a response to that particular
action.

Following are some important metrics that help
us to quantify a real-time system:

a) Interrupt Latency: The time elapsed be-
tween the generation of an interrupt and the start of
the execution of the corresponding interrupt handler.

Example: When a hardware device performs a
task, it generates an interrupt (an IRQ). This inter-
rupt has the information about the task to be per-
formed and about the interrupt handler (ISR) to be
executed. The interrupt handler then performs the
particular task.

b) Scheduling Latency: According to Clark
Williams of RedHat[3], “it is the time between a
wakeup (the stimulus) signaling that an event has
occurred and the kernel scheduler getting an oppor-
tunity to schedule the thread that is waiting for the
wakeup to occur (the response). Wakeups can be
caused by hardware interrupts, or by other threads.”
Scheduling latency is also known as task-response
latency or dispatch latency.

An extension of this concept is the priority in-
version. Here is one example: Sometimes while
scheduling different threads (or tasks) a situation
might arise in which a higher priority thread might
be waiting to obtain a resource that is held by a
lower priority thread. Here a kernel has to reach a
safe point, named a rescheduling point[4], before
it can give the resource to the higher priority task.
In fact, one of the failures of the Mars Pathfinder
was caused by an unbounded priority inversion[5].

Example: Suppose your car (a low priority task)
enters a busy traffic intersection (CPU of the sys-
tem) and you guess that you might be able to cross
the intersection (use the CPU to process), but then
you realize that all of the traffic in front of you has
abruptly come to a stop (an unexpected event occurs
in the system), and you are stuck right in the mid-
dle of the intersection. Suddenly you hear the siren
of a fire truck (a high priority task) heading toward

21 second = 1000 milliseconds = 1000000 us.

you to cross the intersection (use CPU to process).
Unfortunately, you cannot move, as you are stuck,
and the fire truck also has to stop until you are out
of its way (a high priority task has to wait for a low
priority task). As a result, a building might continue
burning and lives may be lost.

In the real-life scenario described above, the fire
truck has to wait, but in a real-time system a real-
time kernel can create paths (roads) on-the-fly which
allows a high priority task (fire truck) to bypass a
low priority task (traffic jam). These are named
rescheduling points.

The figure below illustrates Interrupt Latency
and Scheduling Latency[4].

L OCLES |."|L':':.| TIRS

Task 1 Task2

g B

Interrupt Latency Scheduling Latency

FIGURE 1:
tencies

Interrupt and Scheduling La-

¢) Worst-case Latency: This is defined as the
maximum time that can lapse before the desired
event occurs.

Worst-case refers to the condition when the sys-
tem is under heavy load - more CPU load and I/O
operations occurring than are typical for the partic-
ular system. When we talk about real-time it is very
important that we define our results not only on an
average basis, but in a worst-case scenario as well.

Example: The 1 second (maximum) limit dis-
cussed in the airbag example is the worst-case sce-
nario. It means that, on average, the airbag will be
deployed in, say, 0.3 seconds, but in a worst-case sce-
nario (system under heavy load), the airbag will be
deployed within 1 second.

Latency requirements: In general, a real-time
system should be able to give an average latency in
the range of 10-202 us. Under a worst-case scenario,

3These latency numbers are not set in stone. It really depends upon your needs, the underlying application and the system.
We found these numbers based on our research [10] and [14]. Also, these numbers are with respect to Linux OS. Your mileage

the latency should be within a few hundred microsec-
onds?.

3 Hard vs. Soft real-time

Most people use the terms hard real-time and soft
real-time loosely. However, it is essential to distin-
guish between the two terms.

Hard real-time: A system that can meet the
desired deadlines at all times (100 percent), even un-
der a worst-case system load. In hard real-time sys-
tems, missing a deadline, even a single time, can have
fatal consequences. Some examples are airbag sys-
tems, ABS (anti-lock braking systems), missile sys-
tems, aircraft controls, etc. Hard real-time systems
are used in cases where a particular task, usually
involving life safety issues, needs to be performed
within a particular time frame, otherwise a catas-
trophic event will occur.

Soft real-time: A system that can meet the de-
sired deadlines on average. Some examples are online
audio/video broadcasts, stock market software, cell
phone display, etc. In other words, a soft real-time
system will give reduced average latency but not a
guaranteed maximum response time. Due to the lack
of deadline support, a soft RTOS is risky to use for
industrial control and robotics[6].

A soft RTOS can miss a few deadlines (such as
dropping a few frames in a video application) with-
out failing the overall system. A hard RTOS cannot
afford to miss a single deadline at any point because
of its mission critical application nature (such as de-
ploying an airbag).

4 GPOS vs. RTOS

Since the basics of an RTOS have been discussed,
now is a good time to compare some of the impor-
tant characteristics of an RTOS to those of a general-
purpose operating system (GPOS). A GPOS is used
by average computer users for day-to-day activities
like checking e-mail, typing documents, listening to
music, watching videos, etc. The table below com-
pares GPOS and RTOS systems:

Parameters | GPOS RTOS
Primary Performance Responsiveness
function
Time No Yes
bounded
Guaranteed No Yes
Calculation
(Worst-case)
Calculation Avg: 5 secs | Avg: 7 secs
Example (99.9%) Max: 15 secs
(Max = | Max: 22 secs | Deadline: 20
Worst-case) | (0.1%)° secs
Deadline: 20
secs
Examples WinXP, WinCE, Vx-
WinXPe, Linux, | Works, QNX,
DOS, MacOS Linux (RT
patch)

5 Myths of real-time: Real-

time = Performance?

It is not surprising how often people confuse real-
time with performance. A real-time system does not
mean faster performance. In fact, a real-time system
may or may not lead to deterioration in performance.
Application developers who think they need a real-
time system for better performance of their applica-
tion can actually get the performance they require
by simply upgrading their hardware with faster pro-
cessors, RAM, high speed buses, etc.

According to Yaghmour[4], “Real-time deals
with guarantees, not with raw speed.” However,
a quality RTOS will still deliver decent overall
throughput (performance) but can sacrifice through-
put for being deterministic (or predictable). In fact,
many benchmarking studies on the performance of a
real-time kernel against a standard kernel have found
that overall performance does not decrease signifi-
cantly|[7].

6 Who needs real-time?

As mentioned above, an RTOS does not necessarily
mean a faster machine. Not everyone needs a real-
time system. In fact, almost 90 percent of embedded
applications do not require a hard real-time system.
It depends upon the specific needs and the under-
lying application. The key to determining whether

will vary if you use a different OS or a different real-time approach (see below).
0922 secs is not acceptable in this case and hence it does not qualify as a hard RTOS.

you really need a real-time system is to ask the right
questions:

a) What type of latencies are required? What
is the maximum latency that your application can
tolerate without failing the system?

b) Does the application involve any life-safety is-
sues? Or, in other words, does it need to perform a
certain task within a particular deadline for the task
to be of any value?

Example: A car manufacturer is designing a new
car and requires the airbag system to deploy within
50 us, at any given cost, after collision has occurred,
or else the application (deploying of airbag) won’t be
of any value.

¢) Is it absolutely necessary to process all of the
data in the system, or is it acceptable for a small
amount of data to remain unprocessed?

d) Is the application dependent upon an external
device that needs a response within a particular time
frame or else the entire system will fail?

The following table lists examples of some
hard and soft real-time applications by industry:

Industry Hard Real- | Soft Real-
time time
Aerospace Fault detec- | Display Screen
tion, Aircraft
control
Finance ATMs Stock Market
Websites
Industrial Robotics, DSP | Temperature
monitoring
Medical CT Scan, | Blood extrac-
MRI, fMRI tion, Surgical
Assist.
Communi- QoS Audio/Video
cations streaming,
Networking,
Camcorders

7 Real-time in Linux

Traditionally, Linux was designed to be a GPOS.
However, many projects have been started to con-
vert the Linux operating system into an RTOS:
RTLinux (Wind River), Xenomai, RTAI, RT Pre-
emption Patch, etc. A complete list of implementa-
tions is available on the Real Time Linux Foundation
Web site[8].

There are two fundamental approaches to mak-
ing the Linux kernel real-time:

a) Improve the kernel preemption itself; that is,
make the parts of the code as preemptible as possi-
ble.

b) Introduce a new software layer (a sub-kernel)
beneath (or along with) the actual Linux kernel,
called the Co-kernel approach.

It is beyond the scope of this paper to talk about
all the different types of Linux RTOS implementa-
tions. The approaches mentioned above, except the
RT Preemption (PREEMPT_RT) approach, are fun-
damentally based on the sub-kernel concept, whereas
the (PREEMPT_RT) approach is purely based on
improving kernel preemption. The RT Preemption
approach is described below.

7.1 Advantages of the PRE-

EMPT _RT approach

One of the primary advantages of this approach is the
availability of the same APIs that exist in the non
real-time kernel. Application programmers can use
the existing POSIX compliant APIs (available under
Linux) that they have already used in writing their
applications[9]. Developers don’t need to learn addi-
tional APIs that might be introduced if they were to
go with a Co-kernel approach.

7.2 Is the PREEMPT RT patch a
hard real-time or soft real-time
system?

There has been a lot of debate in the form of technical
discussions over this issue. This document will try to
describe the current scenario. When a generic Linux
kernel is downloaded from www.kernel.org, or when a
Linux distribution like Debian, Fedora, Ubuntu, etc.
that comes with a pre-packaged kernel is used, it is
not a fully real-time kernel. However, the kernel can
be configured to a soft real-time kernel by choosing
the “Preemptible Kernel” (PREEMPT_DESKTOP)
option under the kernel configuration menu.

Moreover, if the soft real-time kernel is not de-
sirable, then the Linux kernel can be made into a
generic real-time kernel[10] by applying Ingo Mol-
nar’s PREEMPT _RT patch[11]. This patch makes a
regular Linux OS (kernel) into a fully Preemptible
OS - an OS that has the capability to stop/hold a
low priority task in favor of a high priority task. This
patch is not part of the mainline kernel as of yet.
However, the team behind this project is constantly
making efforts to make it a part of the mainline ker-
nel. In fact, some parts of the PREEMPT_RT patch

have already made it into the mainline kernel. For
example, the “Voluntary Kernel Preemption” (PRE-
EMPT_VOLUNTARY) option in the mainline kernel
is the result of one such effort.

As mentioned above, it is still not clear whether
the Linux kernel with the PREEMPT_RT patch ap-
plied can be called a hard real-time system or not.
According to Building Embedded Linux Systems][4],
“For most applications that need real-time determin-
ism, the RT-patched Linux kernel provides adequate
service. But for those real-time applications that
need more than low latencies and actually have a
system that can be vigorously audited against bugs,
the Linux kernel, with or without the RT patch, is
not sufficient.”

7.3 Overview of PREEMPT_RT

patch

What are the changes that are made to the mainline
kernel with the PREEMPT_RT patch?

Giving a detailed technical explanation of ev-
ery change made to the kernel code is beyond the
scope of this document. However, here is a high-level
overview of the changes made by this patch:

a) Converts all Interrupt Service Routines (ISRs)
to kernel threads, known as “Threaded Interrupt Ser-
vice Routines.”

b) Replaces kernel “spinlocks” with “mutexes”
that support priority inheritance and are preemp-
tive.

c¢) Adds High Resolution Timer (HRT) support,
which allows the timers to operate at a resolution of
1s.

d) Disables unbounded priority inversion.

(For more technical details about the above is-
sues, please refer to [12] and [13].)

7.4 Device drivers and the PRE-

EMT _RT patch

A common question from users is the following: “Is
there a real-time driver for my ethernet controller
that enables me to use the real-time Linux kernel
(PREEMPT_RT) patch?” At present, most of the
drivers available under the Linux kernel tree are quite
robust and ready to be used with the real-time ker-
nel (PREEMPT_RT patch). They are tightly written
and highly scrutinized, so usually there is no room
for further improvement. If any change has to be

made in order to further reduce the latency, then
the change has to be made to the sub-system.

For example, to reduce network operation related
latency, the change has to be made in the networking
stack (TCP/IP protocol, etc.) and not necessarily
in the network card driver. It would still be good
practice to have your device driver inspected by a
real-time expert to see if there is further possibil-
ity to tighten the code to make it more preemptible.
The real improvement will still come from making
changes to the core code (networking stack), as ex-
plained above. However, keep in mind that if you
decide to do this, the reduced latency will come at
the cost of performance.

8 Conclusion

While this document presents an overview of the is-
sues and concerns commonly experienced by deter-
ministic computer systems, it is not intended to be
a substitute for a detailed analysis of your specific
system requirements or operational priorities.

In summary, a thorough examination of the ca-
pabilities and limitations of using Linux as a real-
time operating system requires a detailed analysis of
your specific system performance and application re-
quirements. These include, but are not limited to,
an assessment of the mission critical nature of your
system, acceptable risks and the level and quality of
performance that is expected.

References

[1] http://www.fags.org/fagqs/realtime-
computing/faq/

[2] http://dictionary.reference.com/browse/latency

[3] http://www.linuxdevices.com/files/article027/rh-
rtpaper.pdf
[4] Building Embedded Linux Systems, 2nd Edition,

Karim Yaghmour, Jonathan Masters and Gilad
Ben-Yossef, Aug. 2008,0’REILLY MEDIA

[5] http://catless.ncl.ac.uk/Risks/19.54.html#subj6

[6] Operating System Concepts, 6th Edition, Sil-
berschatz, A., Galvin, P. B., and Gagne, G.,
2001,JoHN WILEY AND SONS

[7] http://dslab.lzu.edu.cn:8080/docs/publications/Siro.pdf

[8] http://www.realtimelinuzfoundation.org/

[9] http://rt.wiki.kernel.org/index.php/Frequently
_Asked_Questions#List_of-realtime_APls.3F

[10] http://www.ibm.com/developerworks/linux/
library/l-real-time-linuz/

[11] hitp://www.kernel.org/pub/linuz/kernel/
projects/rt/

[12] http://lwn.net/Articles/146861/

[13] http://www.linuxinsight.com /files/ols2007/rostedt-
reprint.pdf

[14] hitp://www.mvista.com/download/videos/
playvideo.php 2video=16

