
Deterministic Synchronization in Multicore Systems: the Role of

RCU

Paul E. McKenney

IBM Linux Technology Center

15350 SW Koll Parkway, Beaverton, OR 97006 USA

paulmck@linux.vnet.ibm.com

Abstract

Although real-time operating systems and applications have been available for multicore systems for
some years, shared-memory parallel systems still pose some severe challenges for real-time algorithms,
particularly as the number of CPUs increases. These challenges can take the form of lock contention,
memory contention, conflicts/restarts for lockless algorithms, as well as many others. One technology that
has been recently added to the real-time arsenal is a preemptable implementation of read-copy update
(RCU), which permits deterministic read-side access to read-mostly data structures, even in the face of
concurrent updates. In some cases, updates may also be carried out in a deterministic manner.

1 Introduction

RCU is a synchronization mechanism that was ac-
cepted into the Linux kernel in late 2002, though
precursors to RCU date back to at least 1980 [4],
with a more complete history available elsewhere [6,
Section 2.2.20 and Table 3.2]. RCU improves scala-
bility by permitting reads to run concurrently with
updates. This is a departure from most prior syn-
chronization primitives, for example, conventional
locking primitives allow only one access at at time,
and even reader-writer locking primitives, while al-
lowing multiple concurrent readers, do not permit
readers to run concurrently with updaters. More
recent primitives, such as seqlock, appear to allow
concurrent readers and updaters, but such readers
are always retried. Research work on transactional
memory permits concurrent readers and updaters,
but conflicting accesses will result in rollback and
retry. Although it is possible to construct real-time
systems using blocking and rollback-retry primitives,
primitives with better determinism would be desir-
able.

In contrast, RCU enables readers and updaters
to run concurrently, with no blocking and no
rollback-retry. Updaters handle conflicts with con-

current readers by maintaining multiple versions of
data structures, and ensuring that old versions are
not freed up (or, more generally, reclaimed) until all
pre-existing readers (which might have references to
the old versions) have completed. RCU also pro-
vides efficient and scalable mechanisms for publish-
ing and subscribing to new data structures, and also
for retracting previously published data, by deferring
reclamation of old data structures that have since
been rendered inaccessible to readers.

The RCU mechanisms distribute work among
readers and updaters so as to make read paths ex-
tremely fast. In fact, in some cases, but unfortu-
nately for neither real-time kernels nor user applica-
tions, RCU’s read-side primitives can have zero over-
head. In addition, as we will see, RCU is somewhat
specialized, being intended primarily to protect read-
mostly data structures.

Section 2 gives a brief overview of RCU, Sec-
tion 3 recapitulates the progress made over the past
five years towards a high-performance real-time im-
plementation of RCU, Section 4 discusses where one
might use RCU to meet real-time latency require-
ments, and finally, Section 5 presents concluding re-
marks.

2 What is RCU?

At its most basic level, RCU is a way of waiting for
other things to get done. An RCU implementation
must implement three fundamental operations [17]:

1. Updaters publish new data in presence of con-
current readers.

2. Readers subscribe to existing data in presence
of concurrent updaters.

3. Updaters retract data previously published in
presence of concurrent readers.

The retraction operation is particularly interest-
ing, as it is not possible to retract data that a reader
is currently subscribed to, given that readers cannot
be blocked, rolled back, or aborted. Instead, up-
daters first make the data inaccessible to new read-
ers, and then wait for a “grace period” to elapse, with
the grace period being sufficiently long to permit all
pre-existing readers to finish with their subscriptions.
Once this grace period has completed, there will be
no subscribers to the data, so that destructive oper-
ations (such as freeing) may safely be carried out.

Publication and subscription can be imple-
mented deterministically, and are thus prime can-
didates for real-time use. Retraction’s long grace pe-
riods often rules it out for use on real-time critical
code paths, but it is possible to use asynchronous
primitives in cases where critical code paths need to
start a grace period, but need not wait for it to finish.

These fundamental operations can be used to im-
plement a reader-writer locking replacement, a bulk
reference counter, a “poor man’s” garbage collector,
and a form of existence guarantee, in many cases
with extremely low and deterministic overhead [10].
Each of these three operations is described in the
following sections.

2.1 RCU Publication

RCU publication uses the rcu_assign_pointer()

primitive. This primitives publishes a pointer to a
structure, and guarantees that any initialization car-
ried out prior to publication is seen by any RCU
reader subscribing to the newly published structure.

p = malloc(sizeof(*p));
p−>a = 1;
p−>b = p;
p−>c = "abc";

rcu_assign_pointer(gp, p);

prohibits code−motion
compiler optimizations

Compiler directiveMemory barriers
prohibit memory
reordering

mutex_lock(&mylock);

mutex_unlock(&mylock);

FIGURE 1: RCU Publication Constraints

The rcu_assign_pointer() primitive is a nor-
mal pointer assignment (hence the name), but pos-
sibly augmented with memory barriers and compiler
directives. Such directives are often required in or-
der to prohibit CPU or compiler optimizations that
would otherwise cause previous initializations to be
seen by RCU readers as occurring after the pointer
assignment. An example of these prohibitions is
shown in Figure 1. Please note that the need for
such constraints is not specific to RCU. For exam-
ple, locking primitives typically use memory barriers
and compiler directives in order to prevent the CPU
and the compiler from moving code out of the lock’s
critical section.

RCU may be used to publish into more com-
plex data structures, including linked lists, trees,
and hash tables. The insertion primitives for such
RCU-protected data structures, for example, list_
add_rcu(), contain carefully placed calls to rcu_

dereference().

Note that RCU coordinates among a single up-
dater and concurrent readers. Some other synchro-
nization primitive (typically locking) must be used
to coordinate among concurrent updaters, as exem-
plified by the mutex_lock() and mutex_unlock() in
Figure 1.

2.2 RCU Subscription

RCU subscription uses the rcu_dereference()

primitive to subscribe to structures published by
rcu_assign_pointer(), returning a pointer to the
specified structure. However, two additional prim-
itives, rcu_read_lock() and rcu_read_unlock(),

are also required to bound the section of code
throughout which the subscribed pointer may safely
be dereferenced. Such sections of code are called
“RCU read-side critical sections”.

prohibits code−motion
compiler optimizations

Compiler directiveMemory barriers
prohibit memory
reordering (Alpha)

do_something_with(p−>a);
do_anything_with(p−>b);
do_nothing_with(p−>c);

s = p−>c; /* illegal */

rcu_read_lock();

rcu_read_unlock();

p = rcu_dereference(gp);

RCU read−side
critical section

FIGURE 2: RCU Subscription Con-
straints

The rcu_dereference() primitive also acts as
a normal pointer assignment, but again augmented
with compiler directives and memory barriers. How-
ever, in contrast with rcu_assign_pointer(), rcu_
dereference() requires memory barriers only when
running on DEC Alpha. As with rcu_assign_

pointer(), the directives and barriers associated
with rcu_dereference() prohibit CPU and com-
piler optimiations that could otherwise permit the
reader to see pre-initialed data, as shown in Figure 2.

Optimizations capable of disrupting users of
rcu_dereference() can be quite counter-intuitive.
An example optimization involves pointer-value
speculation, which can result in the following se-
quence of events:

1. CPU 0 executes code that speculates the value
that will be returned by rcu_dereference(),
but incorrectly guesses a pointer that currently
points into the freelist.

2. CPU 0 continues blithely executing do_

something_with(), do_anything_with(),
and even do_nothing_with(), making wild
references into unallocated memory.

3. CPU 1 decides to publish a new data structure,
and has the bad luck to have malloc() return
exactly the value that CPU 0 guessed.

4. CPU 1 initializes the fields of the newly
allocated structure, then uses rcu_assign_

pointer() to publish it.

5. CPU 0 now validates the speculated value,
finds that it matches, and therefore incorrectly
concludes that its speculation was OK.

The rcu_dereference() primitive must pre-
vent such speculation, as shown in Figure 2. In
some (but not all!) RCU implementations, the
rcu_read_lock() and rcu_read_unlock() primi-
tives must also constrain the compiler and CPU.

As with rcu_assign_pointer(), rcu_

dereference() is used in access primitives of
more complex data structures, for example, the
list_for_each_entry_rcu() list-traversal primi-
tive.

2.3 RCU Retraction

RCU retraction is a three-step process that typically
makes use of a data-element-removal primitive such
as list_del_rcu(), the synchronize_rcu() primi-
tive, and some reclamation primitive such as free().
This retraction process is shown in Figure 3, along
with the relationship between retraction and sub-
scription.

rcu_dereference()

rcu_read_lock()

rcu_read_unlock()

rcu_dereference()

rcu_read_lock()

rcu_read_unlock()

free()

synchronize_rcu()

list_del_rcu()

RCU Read−Side Critical Sections ...

... But Not For Later Ones

Grace Period Must Wait for Pre_ExistingTime

CPU 1CPU 0 CPU 1

G
ra

ce
 P

er
io

d

FIGURE 3: RCU Retraction

A key point about the retraction process is that
only pre-existing readers can possibly hold a refer-
ence to the newly removed element. In the figure,
the right-most reader might reference the data ele-
ment, due to the fact that the reader started execu-
tion before the element was removed. In contrast, the
left-most reader cannot possibly hold a reference, as
it did not start execution until the removal step com-
pleted. RCU’s synchronize_rcu() primitive takes

advantage of this distinction, waiting only for pre-
exiting RCU readers, not for any that start execution
afterwards.

list_del_rcu()

synchronize_rcu()

free()

A B C

A C

A B C

A B C

FIGURE 4: RCU Retraction For Deletion
From List

Figure 4 shows how RCU retraction may be used
to safely remove element B from a linked list contain-
ing elements A, B, and C. Initially, readers might
have subscribed to (and thus might hold references
to) each of these elements, signified by their red color.
The list_del_rcu() primitive unlinks element B
from the list, but leaves the element itself intact,
including the pointer to element C, as shown by the
second row of Figure 4. This permits readers holding
concurrent references to element B to proceed nor-
mally, but prevents any new readers from acquiring
such a reference, as signified by element B’s yellow
color. Therefore, pre-existing readers might still see
the list as {A, B, C}, but because new readers have
no way to gain a reference to element B, they will
see only {A, C}.

The synchronize_rcu() primitive then waits
for all pre-existing concurrent readers to exit their
RCU read-side critical sections, in other words,
synchronize_rcu()waits for a grace period to com-
plete. Because RCU readers’ subscriptions are not
valid outside of an RCU read-side critical section,
once all such pre-existing RCU read-side critical sec-
tions have completed, there can be no readers hold-
ing references to element B, as signified by its green
color in the third row.

Because no readers can possibly hold a reference
to element B, it is now safe for the updater to carry
out destructive operations, in this case, free(). This
leaves the list containing only elements A and C, as
shown in the last row of Figure 4.

Retraction as described above is normally not
used in critical real-time code paths due to the fact
that grace periods can extend for many millisec-
onds. However, there is an asynchronous counter-
part to the synchronize_rcu() primitive named
call_rcu(). The call_rcu() primitive registers a
function and argument to be invoked at the end of
a subsequent grace period, but incurs only queuing
overhead on the critical code path. In addition, the
advent of expedited RCU grace periods might en-
able some real-time applications to place expedited
grace periods on critical code paths using the new
synchronize_rcu_expedited() primitive [11].

2.4 Discussion

A large number of concurrent algorithms may be
constructed using RCU’s publication, subscription,
and retraction primitives. However, such algorithms
are useful only if they provide adequate performance,
scalability, and real-time response. Because RCU is
designed primarily for read-mostly (or subscription-
mostly) situations, the next section will give a rough
feel for the overhead of RCU’s read-side primitives.

3 Towards a High-Performance

Real-Time RCU Implemen-

tation

This section gives a quick overview of some Clas-
sic RCU and Preemptable RCU read-side primitives,
followed by some references to work on user-level
RCU implementations. This section is only intended
to give a rough feel for the overhead of these primi-
tives, but citations are given to direct the reader to
additional information.

3.1 Classic RCU

Server-class (!CONFIG_PREEMPT) builds of the Linux
kernel use the extremely efficient implementa-
tions for rcu_read_lock() and rcu_read_unlock()

shown in Table 1. It is hard to imagine an implemen-
tation with less overhead.

Unfortunately, !CONFIG_PREEMPT kernel builds

1 static inline void rcu_read_lock(void)

2 {

3 }

4

5 static inline void rcu_read_unlock(void)

6 {

7 }

Table 1: Server-Class RCU Read-Side Primitives

1 static inline void rcu_read_lock(void)

2 {

3 preempt_disable();

4 }

5

6 static inline void rcu_read_unlock(void)

7 {

8 preempt_enable();

9 }

Table 2: Desktop-Class RCU Read-Side Primitives

have unimpressive real-time capabilities, so CONFIG_

PREEMPT desktop-class real-time support was added
during the Linux 2.5 kernel development effort. This
adds some overhead to the RCU read-side prim-
itives, as can be seen in Table 2. These primi-
tives are still very light-weight, updating a field in
the local thread_info structure, and, in the case
of rcu_read_unlock(), also checking to see if the
scheduler needs to be invoked, and invoking it if so.
However, the fact that preemption is disabled for the
duration of each RCU read-side critical section does
not help real-time response.

This situation lead to the development of Pre-
emptable RCU.

3.2 Preemptable RCU

The read-side primitives for preemptable RCU are
shown in Table 3. These primitives have been de-
scribed fully elsewhere [15], so we will instead simply
count the number of atomic instructions and memory
barriers, which can be as many as two each for both
rcu_read_lock()and rcu_read_unlock(), for a to-
tal of up to four for a given read-side critical section.
To add insult to injury, both primitives also disable
interrupts.

Table 4 shows the current mainline implementa-
tion of the RCU read-side primitives. Again, these
have been described in detail elsewhere [7], so we
will instead count expensive operations. There are

no atomic instructions or memory barriers, but these
primitives still disable interrupts. In addition, there
are nine primitives that constrain the compiler and
quite a bit more code. So while the current mainline
preemptable-RCU implementation is a decided im-
provement over the early implementation, it is still
quite heavyweight compared to the non-preemptable
implementations shown above.

It turns out to be possible to further reduce read-
side overhead, as shown in Table 5. This imple-
mentation does not use atomic instructions, mem-
ory barriers, or interrupt disabling, and has only five
constraints on the compiler. Furthermore, this ex-
perimental implementation executes only four lines
of C code in the common case, many fewer than
the earlier implementations. The uncommon case
is quite heavyweight, but is invoked only in excep-
tional circumstances, such as when the read-side crit-
ical section actually did block or was preempted—
in which case the overhead of the resulting con-
text switches dominates the overhead [12]. The
overhead of this variant of rcu_read_lock() and
rcu_read_unlock() can be expected to be roughly
that of the desktop-class variant shown in Table 2.

3.3 Catalog of User-Level RCU Im-

plementations

Of course, a real-time RCU implementation in an
operating-system kernel is all well and good, but it
does not provide much help to real-time applications.

1 void rcu_read_lock(void) 1 void rcu_read_unlock(void)

2 { 2 {

3 int f; 3 unsigned long oldirq;

4 unsigned long oldirq; 4 struct task_struct *t = current;

5 struct task_struct *t = current; 5

6 6 raw_local_irq_save(oldirq);

7 raw_local_irq_save(oldirq); 7 if (--t->rcu_read_lock_nesting == 0) {

8 if (t->rcu_read_lock_nesting++ == 0) { 8 smp_mb__before_atomic_dec();

9 f = rcu_ctrlblk.completed & 1; 9 atomic_dec(t->rcu_flipctr1);

10 smp_read_barrier_depends(); 10 t->rcu_flipctr1 = NULL;

11 t->rcu_flipctr1 = 11 if (t->rcu_flipctr2 != NULL) {

12 &(__get_cpu_var(rcu_flipctr)[f]); 12 atomic_dec(t->rcu_flipctr2);

13 atomic_inc(t->rcu_flipctr1); 13 t->rcu_flipctr2 = NULL;

14 smp_mb__after_atomic_inc(); 14 }

15 if (f != (rcu_ctrlblk.completed & 1)) { 15 }

16 t->rcu_flipctr2 = 16 raw_local_irq_restore(oldirq);

17 &(__get_cpu_var(rcu_flipctr)[!f]); 17 }

18 atomic_inc(t->rcu_flipctr2);

19 smp_mb__after_atomic_inc();

20 }

21 }

22 raw_local_irq_restore(oldirq);

23 }

Table 3: Early Preemptable RCU Read-Side Primitives

1 void __rcu_read_lock(void) 1 void __rcu_read_unlock(void)
2 { 2 {

3 int idx; 3 int idx;
4 struct task_struct *t = current; 4 struct task_struct *t = current;
5 int nesting; 5 int nesting;

6 6
7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); 7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);

8 if (nesting != 0) { 8 if (nesting > 1) {
9 t->rcu_read_lock_nesting = nesting + 1; 9 t->rcu_read_lock_nesting = nesting - 1;

10 } else { 10 } else {
11 unsigned long flags; 11 unsigned long flags;
12 12

13 local_irq_save(flags); 13 local_irq_save(flags);
14 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; 14 idx = ACCESS_ONCE(t->rcu_flipctr_idx);

15 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; 15 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
16 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; 16 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
17 ACCESS_ONCE(t->rcu_flipctr_idx) = idx; 17 local_irq_restore(flags);

18 local_irq_restore(flags); 18 }
19 } 19 }

20 }

Table 4: Current Mainline Preemptable RCU Read-Side Primitives

1 void __rcu_read_lock(void)

2 {

3 ACCESS_ONCE(current->rcu_read_lock_nesting)++;

4 barrier();

5 }

6

7 void __rcu_read_unlock(void)

8 {

9 struct task_struct *t = current;

10

11 barrier();

12 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&

13 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))

14 rcu_read_unlock_special(t);

15 }

Table 5: Experimental Preemptable RCU Read-Side Primitives

Fortunately, there have been a number of user-level
RCU algorithms put forward over the past five years.

In 2006, Hart et al. [3] used a user-level variant of
Classic RCU for benchmarking purposes. This im-
plementation is sufficient for real-time applications
whose architectures guarantee that each thread will
periodically pass through a quiescent state.

In 2008, McKenney put forward a number of
user-level RCU implementations, primarily for the
purpose of debugging Linux kernel code at user level
and to serve as an introduction to the more-complex
implementations in the Linux kernel [8, 13]. These
algorithms, though simple, all either impose restric-
tions on the application or suffer from high read-side
overhead.

In 2009, Desnoyers adapted preemptable RCU
for user-level use by substituting POSIX signals for
the scheduling-clock interrupt [2]. This approach al-
lows good read-side overhead combined with mini-
mal restrictions on the application (namely, that it
be willing to give up a signal).

Given this recent progress, it seems safe to say
that RCU is ready to take on user-level applications,
including real-time applications.

4 Where to Use RCU

Details on the use of RCU has been discussed at
length [1, 9, 10], although continued progress indi-
cates that there is still much more to be learned.
This section will instead focus on the situations to
which RCU is best applied, as summarized by Fig-
ure 5.

(RCU is really unlikely to be the right tool for the job)
Update−Mostly, Need Consistent Data

(RCU might be OK)
Read−Write, Need Consistent Data

(RCU Works Great!!!)

(RCU Works OK)
Read−Mostly, Need Consistent Data

Inconsistent Data OK
Read−Mostly, Stale &

FIGURE 5: RCU Areas of Applicability

The situation most favorable to RCU is for read-
mostly data structures where stale and inconsistent
data can be tolerated. The prototypical use is rout-
ing tables [14], which maintain in-memory state that
represents outside-of-system connectivity. Changes
in outside-of-system connectivity result in routing-
table updates, but these changes often take signifi-
cant time to propagate to the system. This propa-
gation delay means that the system has been mis-
routing for some tens of seconds or even minutes, so
that the additional few milliseconds required to re-
tract the old data is not significant. The benefit is
that readers gain deterministic access to the data.

RCU can also be quite helpful for read-mostly
data structures where consistent and fresh data is
required. For example, in the Linux kernel’s Sys-
tem V semaphore implementation, RCU protects the
data structures mapping from the user-mode semid
to the in-kernel sem_array structure, but the struc-
ture itself is protected by a spinlock in the enclosed

kern_ipc_perm structure [1]. This permits deter-
ministic mapping from semid to sem_array, while
the spinlock reintroduces freshness and consistency,
but at the level of an individual sem_array structure
rather than globally.

RCU is less likely to be helpful for read-write
data structures where consistent and fresh data is
required. That said, the dcache system is one such
example, where RCU is used to map from a path-
name segment and parent dentry to the child den-
try. Per-dentry locking and a global seqlock are used
to impose freshness and consistency to pathname
lookups [5, 16].

Finally, if the data structure is updated more of-
ten than it is read, and if consistent and fresh data
are required, RCU is quite unlikely to be the right
tool for the job.

R
ea

de
r−

W
rit

er
 L

oc
ki

ng
R

C
U

CPU 2

CPU 1

CPU 0

CPU 2

CPU 1

CPU 0

RCU Advantage

Read

Read

Read Read

Read

Read

Read

Read Read

Read

Update

Update

Read

Read

Read

Read

FIGURE 6: Staleness for Reader-Writer
Locking and RCU

A surprising number of algorithms tolerate ac-
cess to stale data. A key question to ask is “what de-
fines stale?” It is natural to assume that the data is
by definition fresh when it first arrives at the system,
however, communication latencies often invalidate
this assumption. When data is stale upon arrival, as
it was in the routing-table example above, RCU can
often provide greater freshness than can other syn-
chronization primitives such as reader-writer lock-
ing. This can be seen in Figure 6, where reader-
writer locking delays the update, thus resulting in
the update happening later than for RCU. There-
fore, if the freshness of the data is defined externally,
use of reader-writer locking can result in data being
more stale than for RCU.

Additional information on uses of RCU from the

Linux kernel may be found in McKenney’s disserta-
tion [6, Chapter 6].

5 Conclusions

The past year has seen a number of user-level RCU
implementations that promise to be useful in real-
time applications, and also the beginnings of a
much simpler and faster implementation of in-kernel
preemptable (real-time) RCU. These developments
promise to bring new options for real-time applica-
tions running on multi-core hardware.

Acknowledgements

No article mentioning the -rt patchset would be
complete without a note of thanks to Ingo Mol-
nar, Thomas Gleixner, Sven Dietrich, K.R. Foley,
Gene Heskett, Bill Huey, Esben Neilsen, Nick Pig-
gin, Steven Rostedt, Michal Schmidt, Daniel Walker,
and Karsten Wiese. We all owe Darren Hart a debt
of gratitude for his efforts to render this document
human-readable. Finally, I owe thanks to Kathy
Bennett for her support of this effort.

Legal Statement

This work represents the views of the authors and does
not necessarily represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be

trademarks or service marks of others.

References

[1] Arcangeli, A., Cao, M., McKenney,

P. E., and Sarma, D. Using read-copy
update techniques for System V IPC in
the Linux 2.5 kernel. In Proceedings of
the 2003 USENIX Annual Technical Con-
ference (FREENIX Track) (June 2003),
USENIX Association, pp. 297–310. Available:
http://www.rdrop.com/users/paulmck/

RCU/rcu.FREENIX.2003.06.14.pdf [Viewed
November 21, 2007].

[2] Desnoyers, M. [RFC git tree] userspace
RCU (urcu) for Linux. Available: http://

lkml.org/lkml/2009/2/5/572 git://lttng.

org/userspace-rcu.git [Viewed February 20,
2009], February 2009.

[3] Hart, T. E., McKenney, P. E., and

Brown, A. D. Making lockless synchroniza-
tion fast: Performance implications of memory
reclamation. In 20th IEEE International
Parallel and Distributed Processing Symposium
(Rhodes, Greece, April 2006). Available:
http://www.rdrop.com/users/paulmck/RCU/

hart_ipdps06.pdf [Viewed April 28, 2008].

[4] Kung, H. T., and Lehman, Q. Con-
current maintenance of binary search trees.
ACM Transactions on Database Systems 5,
3 (September 1980), 354–382. Available:
http://portal.acm.org/citation.cfm?id=

320619&dl=GUIDE, [Viewed December 3, 2007].

[5] Linder, H., Sarma, D., and Soni, M. Scal-
ability of the directory entry cache. In Ottawa
Linux Symposium (June 2002), pp. 289–300.

[6] McKenney, P. E. Exploiting Deferred
Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System
Kernels. PhD thesis, OGI School of Sci-
ence and Engineering at Oregon Health
and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf [Viewed
October 15, 2004].

[7] McKenney, P. E. The design of preemptible
read-copy-update. Available: http://lwn.

net/Articles/253651/ [Viewed October 25,
2007], October 2007.

[8] McKenney, P. E. Is Parallel Programming
Hard, And, If So, What Can You Do About
It? kernel.org, Corvallis, OR, USA, 2008.
Available: git://git.kernel.org/pub/scm/

linux/kernel/git/paulmck/perfbook.git

[Viewed August 15, 2009].

[9] McKenney, P. E. RCU part 3: the RCU
API. Available: http://lwn.net/Articles/

264090/ [Viewed January 10, 2008], January
2008.

[10] McKenney, P. E. What is RCU? part 2:
Usage. Available: http://lwn.net/Articles/

263130/ [Viewed January 4, 2008], January
2008.

[11] McKenney, P. E. [PATCH -tip 0/3] expe-
dited ’big hammer’ RCU grace periods. Avail-
able: http://lkml.org/lkml/2009/6/25/306

[Viewed August 16, 2009], June 2009.

[12] McKenney, P. E. [PATCH RFC -tip
0/4] RCU cleanups and simplified preempt-
able RCU. Available: http://lkml.org/lkml/
2009/7/23/294 [Viewed August 15, 2009], July
2009.

[13] McKenney, P. E. Using a malicious
user-level RCU to torture RCU-based
algorithms. In linux.conf.au 2009 (Ho-
bart, Australia, January 2009). Available:
http://www.rdrop.com/users/paulmck/

RCU/urcutorture.2009.01.22a.pdf [Viewed
February 2, 2009].

[14] McKenney, P. E., Appavoo, J., Kleen,

A., Krieger, O., Russell, R., Sarma,

D., and Soni, M. Read-copy update.
In Ottawa Linux Symposium (July 2001).
Available: http://www.linuxsymposium.

org/2001/abstracts/readcopy.php

http://www.rdrop.com/users/paulmck/

RCU/rclock_OLS.2001.05.01c.pdf [Viewed
June 23, 2004].

[15] McKenney, P. E., Sarma, D., Molnar,

I., and Bhattacharya, S. Extending rcu for
realtime and embedded workloads. In Ottawa
Linux Symposium (July 2006), pp. v2 123–138.
Available: http://www.linuxsymposium.org/

2006/view_abstract.php?content_key=184

http://www.rdrop.com/users/paulmck/RCU/

OLSrtRCU.2006.08.11a.pdf [Viewed January
1, 2007].

[16] McKenney, P. E., Sarma, D., and Soni,

M. Scaling dcache with RCU. Linux Journal 1,
118 (January 2004), 38–46.

[17] McKenney, P. E., and Walpole, J. What is
RCU, fundamentally? Available: http://lwn.
net/Articles/262464/ [Viewed December 27,
2007], December 2007.

