
An Open Implementation of Profibus DP

TRAN Duy Khanh, Pavel PISA, Petr SMOLIK
Czech Technical University in Prague, Faculty of Electrical Engineering

Department of Control Engineering
Karlovo namesti 13, 121 35, Praha 2

info@pbmaster.org
http://www.pbmaster.org

Abstract

This paper presents a project named PBMaster, which provides an open implementation of the
Profibus DP (Process Field Bus Decentralized Peripherals). The project implements a software imple-

mentation of this very popular fieldbus used in factory automation. Most Profibus solutions, especially
those implementing the master station, are based on ASICs, which require bespoke hardware to be built
solely for the purpose of Profibus from the outset. Conversely, this software implementation can run on
a wide range of hardware, where the UART and RS-485 standards are present.

1 Motivation

Profibus is a fieldbus that can be used both in
production automation and process automation and
which has become a global market leader. World-
wide, over 28 million Profibus devices were in-
stalled by the end of 2008.

Although the Profibus was initially standard-
ized in the late 1980s it is not easy to find mate-
rials to help design and system engineers develop
new products. Despite many interesting features
like deterministic media access or fast data exchange,
Profibus still seems to be only in the domain of pro-
fessional applications and commercial solutions. The
main reason is probably due to the high price of all
Profibus products, whether hardware or software so-
lutions.

Commercial solutions commonly need special
hardware, and the software is mostly proprietary
- which also significantly increases the price of
Profibus applications. In addition, the primary sup-
ported platform for these solutions is the operating
system MS Windows. Support for Unix-like systems
is very low.

2 PBMaster project

Into this marketplace, PBMaster [1] comes with its
solution within the field of this popular industrial
bus. The project is still under extensive develop-
ment, but aims to offer a cheap solution that will
make it possible to use Profibus not only in commer-
cial applications, but also in universities, homes or
semi-professional applications. The key to achieving
these objectives is in using common inexpensive
hardware and open source software.

Initially, the project aimed to offer a solution
for connecting common personal computers running
Linux to this industrial bus. Now, it runs on
several operating systems (Linux, FreeBSD and
NetBSD) and sys-less embedded hardware based on
the ARM architecture. The objectives are to offer
multi-platform drivers, libraries and applications ca-
pable of carrying out the master, slave and analyzer
functions of the Profibus. In the future the project
will try to offer a complex and inexpensive software
based solution for applications using Profibus.

The following picture describes the software
structure of the PBMaster project. We will take a
closer look at each component later in this paper.



FIGURE 1: Software structure

3 Open source vs. Profibus

patents

The project was established to offer an open imple-
mentation with all the components to be released
under the GNU GPL v.2 or a later version. Earlier
this year distribution of the source code was
been suspended due to patent problems prevent-
ing the distribution of the implementation under an
open-source license. The patents appeared this year
even though they were applied in 1992. Two of the
three patents related to the Profibus implementa-
tion affect the FDL master implementation within
the PBMaster project.

Despite very positive feedback from the Profibus
experts after the presentation of the project at
the Profibus Conference in Krakow in July 2009,
the PI (Profibus International organization) and
patent holders declared they did not want to support
the community and repeated that Profibus is an
“open” but not “open-source” standard. The
PI grants rights for using the patents to Profibus
members. This means the PI members can use
PBMaster’s implementation. The situation unfortu-
nately does not allow distribution of the master im-
plementation, which covers a significant part of the
project, in the community until the patents are valid.

4 Hardware System Structure

As mentioned before, implementing the standard by
software makes it possible to run on a wide range
of hardware including that which was not designed

for the purpose of Profibus. It is also one of the
means by which the solution can be made inexpen-
sive. The software implementation can run on hard-
ware integrating UART (Universal Asynchronous
Receiver/Transceiver) circuits with RS-485 output,
the physical standard used by Profibus DP. The cur-
rent version supports three types of hardware. We
will discuss them in the following sections.

4.1 RS-232/RS-485 Converter

The converter offers an economic solution in order to
connect a PC to a Profibus network. The essential
requirement is for the connected PC to have a serial
port, which could be a problem as modern computers
lack this communication port. The electric level of
RS-232, generated by the common PC, is converted
using this dongle to RS-485, used by Profibus DP.
The dongle is powered directly from the serial port
of the PC. It is the reason why the converter is very
small with very few components integrated. The lack
of external power supply limits use of the dongle in
very extensive networks with long cabling; further-
more, it’s not possible to use cable termination and
the number of nodes on the network is limited to
around 10 nodes.

A highest attainable Profibus speed of
19200 bit/s is another limit of this converter. The
limitation is caused by differences in speeds sup-
ported by RS-232 of the personal computer and the
speeds supported by Profibus DP. This converter
can be run in mode Master and Analyzers. It is a
very low cost solution. All schematic and assembly
materials are available in the project’s repository.

FIGURE 2: RS-232/RS-485 Converter



4.2 PCI based cards

In order to achieve higher speeds it is necessary to
use some UART integrated extension cards. The cur-
rent drivers support PCI based cards integrating the
OX16C954 chip, probably the fastest UART inte-
grated circuit with a PCI interface on the market.
It is a high performance UART with 128 byte FI-
FOs by Oxford Semiconductor. The IC integrates a
16C550 compatible UART offering an ample FIFO
size and many other interesting features. One of the
most important features is the maximal bus speed
of 15 Mbit/s in normal mode and 60 Mbit/s in ex-
ternal clock mode. Using this IC the drivers achieve
a communication speed of 12 Mbit/s, the max-
imal speed of Profibus DP. The PCI card contains
up to four ports. Each port can run in Master or
Analyzers mode up to 12 Mbit/s independently of
the others. The PCI card does not allow usage in
the Bit analyzer mode at the moment as there is no
built-in hardware support (could be added easily).

FIGURE 3: UART Integrated PCI Card

4.3 ARM based boards

Having the option to use the Profibus drivers on
an embedded system is especially interesting. This
option makes connecting to the Profibus network
easy, cheap and removes the need for big hardware
support. Reading sensors and controlling actuators
would be very easy and available for common appli-
cations like home automation, robot controlling or
even control of a production line. The embedded
system offers a lot of options for creating a bridge
between different standards, as the micro-controllers
usually offer many types of interfaces.

The following figure shows a board integrating
an LPC 2148 ARM with UART interfaces by NXP
Semiconductors. The highest tested Profibus speed

was 500 kbit/s (limited by the transceiver). It is
expected to achieve a Profibus speed 1.5 Mbit/s or
higher with a faster transceiver. The software runs
on a target without operating system. It is a robust
solution and can be used in Master or experimentally
in Slave mode.

FIGURE 4: Embedded Board Integrating an
ARM LPC 2148

This very tiny module integrating ARM7 by At-
mel offers many interesting interfaces like Ether-
net, USB 2.0, SPI, I2C, CAN transceiver, UART
+ RS-232/RS-485 transceivers etc. It runs FreeR-
TOS, a highly portable real-time operating system.
Profibus support for this module is under develop-
ment and is expected to achieve very high speeds
thanks to the DMA channel and very high speed RS-
485 transceiver.

FIGURE 5: ARM7 board running FreeR-
TOS

5 Device Drivers

Almost all hardware needs software to support the
functionality it was designed for. In our case, this



takes the form of a device driver implementing low-
level support called FDL (Fieldbus Data Link). Most
of the hardware supported solutions use ASICs to
implement this FDL layer. In contrast, the PB-
Master solution is implemented solely by software.
Along with the FDL layer the drivers cover also the
low-level part of the Profibus analyzer and UART
Bit/Byte analyzers. The software structure was de-
signed to be as modular as possible. The modularity
allows porting to other platforms without extensive
modification of the base part. The created frame-
work offers a simple way to write driver support for
new hardware.

The current driver design is divided into three groups
of modules:

The core module – (pbmcore) – is the main driver
implementing the basic device data structure,
chip related defines, a bit/byte stack imple-
mentation and the most important part, the
Profibus FDL stack. The implementation of
Profibus covers Finite State Machines of an
FDL Master station, FDL Slave station, low-
level part of the Profibus Frame Analyzer and
UART Bit/Byte Analyzer.

The module is platform and hardware indepen-
dent and by itself does nothing but offer func-
tions to other chip drivers. This allows use of
several chip drivers simultaneously without any
code redundancy. In addition it makes possible
supporting new hardware without deep knowl-
edge about the Profibus standard.

Chip drivers – (pbm 950pci, pbm 8250, ..) – im-
plement basic I/O operations with real
hardware like chip initialization, read, write
etc. The chip module, upon loading, registers
to the core module these basic operations and
provides hardware and system dependent sup-
port for things such as resource allocation or
interrupt registration. The remaining actions
are controlled by the core module through the
state machine.

User space interface module – (pbm fdl) – the
third group of modules implements an inter-
face between user applications and the FDL
layer in the kernel space. Currently, the mod-
ule is a character device but in the future
a socket module will be developed to allow
communication using a socket-based technique.
An application writes its request to, and reads
responses from, the device. This data is passed
to the core module and then is addressed cor-
rectly to an appropriate chip device. Regard-
less of whether the user chooses to communi-

cate using a file or a socket, the API between
an application and a kernel is unified, as well
as the API between an interface module and
the core module.

6 FDL API

Once the drivers are installed, communication with
another station on the bus is provided by sending
bytes in the raw form directly to the Profibus de-
vice. Even thought it is simple to realize communi-
cation in this way, the fact that a developer needs to
understand frame structures, and even the Profibus
specification, make it unsuitable and inconvenient for
most application developers. Hence an API was de-
veloped to offer a unified and simple mechanism to
access the Profibus network.

The API is provided in the form of a library.
The library offers a unified system and architecture-
independent programming interface handling the
transfer between FDL applications and Profibus sta-
tions.

The project had a plan to fully support the
FDL programming interface by Siemens. In the
end, backwards support was not implemented due to
the proprietary license of that programming inter-
face. Nonetheless, the project’s API partly supports
backward compatibility with the Siemens’s FDL pro-
gramming interface. Everything related to Siemens’s
Request Block should be removed as the library does
not work with that structure. Replace the Request
Block with a buffer. This backward support is imple-
mented as macros calling the proper API functions
described previously. Mapping between the project’s
API and the API by Siemens is listed below:

pbm open SCP open
pbm close SCP close
pbm write SCP send
pbm read poll SCP receive
pbm errno SCP get errno

7 Profibus DP

The Profibus DP (Decentralized Peripherals) layer
is based on top of the FDL layer. There are three
groups of specification for the DP layer. The ba-
sic version DPV0 should be supported by all DP
devices which involve support for Cyclic Data Ex-
change and Diagnostics. The DPV1 extensions are
an integral part of the Profibus PA specification pro-
viding Acyclic Data Exchange, Process Alarm Han-



dling etc. Extension DPV2 introduces additional en-
hancements that are used in high-speed servos and
drives and in functional safety systems. DPV0 will
be supported by the project and its implementation
is under development. This will be an important step
for certification of the implementation.

8 TCP/IP Server

Until now, the software supported only Unix-like op-
erating systems or embedded ARM based systems.
With the server, any station supporting TCP/IP can
connect to the Profibus network remotely.

FIGURE 6: Client-Server Architecture

The figure illustrates a client-server model. The
server is installed on the machine along with the de-
vice drivers. The device drivers implement installed
nodes on the bus in several modes. The server pro-
vides access to devices created by the drivers over
the Internet network. On one side it uses the FDL
programming interface for accessing those devices.
On the other side socket communications are estab-
lished to serve the client demanding remote access to
devices.

9 Bus Analyzer and Monitor

Applications in industry often demand for tracking
problems on the fieldbus. The problems can be di-
agnosed and localized by listening to and analyz-
ing communication on the bus. By analyzing the
captured data, it is possible to detect problems like
frames with errors (often caused by signal reflection),
station inactivity, address collisions, too short Slot
Times of the Master stations, even bad timing of
stations.

This section introduces a graphical analyzer and
monitoring program. The program was written in
QT and as with other components of the project, was

designed to be fast, reliable and modular. Thanks to
its modularity, it will be more simple to integrate
new features into the program so it could become
a versatile industrial bus control and monitoring pro-
gram. The current version supports Profibus Frame
analyzer and UART Bit/Byte analyzer.

FIGURE 7: Profibus FDL/DP Analyzer

The main window contains menus, tool bars, side
bar, debug window and tabs with specific functions.
The global buttons like Start Capture, Refresh View,
Timestamp settings affect only the visible tab. The
debug window is collective for all tabs. The side
bar shows information about the nodes. Several tabs
of the same type can be present at the same time.
The analyzer offers other interesting features like on-
line view during capture, offline view of saved files
and timestamp display in five formats. Timestamp
can be in absolute time, time difference between data,
time from the start of capture, bit time difference be-
tween data and bit time from the start of capture.
Capture trigger, view filter and statistics of captured
data will be implemented in the next version.

FIGURE 8: Bit Analyzer



All addresses are specified using the URL mech-
anism (Uniform Resource Locator). A URL iden-
tifier could be pbm://server.pbmaster.org:11000/0,
file:///dev/pbmaster0 or simply /dev/pbmaster0.
The first URL refers to a device number 0 on a re-
mote server using port number 11000, the latter two
refer to a local file.

10 Live Linux CD

The PBMaster project is an effort to develop and
maintain an open-source implementation of Profibus
DP. Running in open-source software has also disad-
vantages. Probably the biggest disadvantage is that
almost everyone using computers is familiar with
commercial operating systems like MS Windows or
Mac OS, but not everyone has experience nor the
ability to get on with Linux, BSDs, etc. Despite
rapid improvements and the spreading use of open-
source software, applications based on commercial
software and MS Windows are still dominant and
this situation applies especially for Profibus indus-
try.

That is why the project has developed a Live
Linux CD offering an easy way to use the Profibus
solution without need for software installation. It
is not necessary to install any operating system nor
other program - just plug in the hardware, insert the
Live CD and start working with Profibus.

The CD is based on the Debian Lenny [6] dis-
tribution. It contains utilities and useful tools like
Xfce desktop environment and its programs, Firefox
internet browser, Kate text editor, Openoffice.org of-
fice suite, OpenSSH client and server, GCC compiler
collection and Make utilities, Midnight Commander,
Vim editor, GIT, CVS, SVN, media player and many
more programs including all necessary libraries to
compile the project’s components. The number of
packages in total is more than 750.

FIGURE 9: Xfce Desktop with Profibus Util-
ities

Imagine having an environment supporting
Profibus and other UART utilities in just a few min-
utes. There is no need for installation, no manual
configuration required - just put the Live CD into
your drive and reboot the computer.

11 An Overview of Applica-

tions

The figure shows a model production line running
Profibus using PBMaster. The drivers implement a
master station with an integrated PCI card, based on
an OX16PCI954 chip, running at 1.5 Mbit/s. It is
possible to run up to 12 Mbit/s without any problem.
The speed limitation is caused by one slave station.
Actuators and sensors are connected to slave stations
by WAGO.

FIGURE 10: A Model Production Line

The figure shows several Profibus networks. One
network consists of an ARM based board running
in master mode, a slave station with digital in-
puts/outputs and an analyzer running in bit mode.
The network communication speed is 500 kbit/s.
The second network consists of two Profibus nodes
communicating at 12 Mbit/s. One node simulates a
master station, the second node runs in frame ana-
lyzer mode. The rest 4 unconnected ports are mas-
ters running at 187.5 kbit/s, 500 kbit/s, 1.5 Mbit/s
and 6 Mbit/s. All nodes run simultaneously.



FIGURE 11: Master-Slave Communication
and Bus Monitoring

The figure shows two Profibus networks. There is
one master, one slave and one bit analyzer on the first
network running at 19200 bit/s. The second network
consists of one master and one frame analyzer sta-
tion running at 12 Mbit/s. Data from the analyzer
is sent over the Internet network to the analyzer and
monitoring program running on a notebook. More
examples can be found on the project’s website [2].

FIGURE 12: Remote Bus Monitoring

12 Friendly projects

I would like to mention two projects, uLan and
ProfiM, which have similar objectives as PBMas-
ter. Some solutions and ideas used in PBMaster have
been taken from these projects.

The project uLan [4] provides a 9-bit multi-
master message oriented communication protocol,
which is transferred over the RS-485 link. Charac-
ters are transferred in the same way as for the RS-
232 asynchronous transfer except for the parity bit,

which is used to distinguish between data charac-
ters and protocol control information. The physi-
cal layer consists of one twisted pair of leads and
RS-485 transceivers. The project is developed and
maintained by Pavel Pisa and Petr Smolik. For more
information please refer to the project homepage.

ProfiM [5] is a project implementing simulation
of master stations using only UART integrated PCI
cards or a simple converter of RS-232/RS-485. It
leads to an inexpensive solution as there is no need
of any expensive proprietary hardware nor software.
In addition it offers an FDL programming interface
compatible with the API by Siemens. The project
supports only Windows OS. One of the disadvan-
tages is that the project has been inactive since 2004.
The driver was not designed to be modular and from
my point of view it is inefficient and even the stabil-
ity of the driver is not favorable. The project was
developed by Pavel Trnka and maintained by Petr
Smolik. For more information please refer to the
project homepage.

13 Compiling with OMK

At present, the device drivers are built inside the
source code directory using system’s default make
scheme. On the other hand, the project’s applica-
tions are built out of the source tree using Make sys-
tem called OMK (Ocera Make System [7]).

OMK [3] is a Make system developed and main-
tained by Pavel Pisa and Michal Sojka from the De-
partment of Control Engineering at Czech Techni-
cal University in Prague under the OCERA project.
The main objective of the OMK system is to simplify
compilation of components on the host machine as
well as cross compilation for the target. In addition
the system provides for a better directory and file
structure. The make system allows building out of
source trees and storing results of the compilation in
a separate directory structure to simplify testing and
program installation.

A key solution is to have a central Makefile with
compilation rules for most sub-components and com-
ponents. This solution allows faster and smoother
changes to the system, such as kernel updates. Hav-
ing most rules in a central file, Makefiles in source
directories can be very simple.

OMK was not designed to support the BSD sys-
tems. A number of changes have been made in order
to use this make system on FreeBSD and NetBSD.
Although not all OMK features are available yet un-
der FreeBSD/NetBSD, it is possible to compile all



project’s applications using this system. The OMK
system is particularly useful for cross-compiling to
the final architecture (e.g. embedded ARM).

14 Advantages and disadvan-
tages

One of the advantages and a strong point of the
project is based on the modular design of the soft-
ware. It makes the implementation portable and
multi-platform. The software achieves 12 Mbit/s
with very good performance. Thanks to the software
implementation, applications based on RS-485 could
be switched to use the Profibus, therefore it is not
necessary to invent a new protocol in the application
based on this physical standard.

There are of course many disadvantages of the
software implementation. Even though it works re-
liably in most cases, it is not possible to guarantee
fully deterministic responses on common operating
systems due to their design (e.g. when the CPU is
occupied by handling a lot of interrupts from another
devices). This could be solved by using Real-Time
operating systems (tested on Linux with Real-Time
Preempt patches). Another option to achieve fully
deterministic responses is to use embedded boards
without operating system.

This is a software implementation without hard-
ware support. It means there is no oscilloscope mode
nor speed detection by analyzing the signal. Another
very important disadvantage is that this implemen-
tation is not yet certified (under development).

15 Conclusion and Future

Work

An open implementation of Profibus has been pre-
sented throughout this paper. One of the stated
goals for the project was the creation of multi-
platform software capable of running on systems with
operating systems as well as embedded boards with-
out OS. The components were designed to facilitate
porting to new platforms. The software is imple-
mented to be fast, reliable and requiring minimal
system resources.

Currently, the project offers an implementation
of Profibus FDL master stations, FDL slave stations,
Profibus FDL/DP frame analyzer, bit and byte ana-
lyzer for UART based bus, an FDL programming in-
terface, Live Linux CD, a TCP/IP server for remote
access, a set of examples and free Profibus documen-

tation. The software runs on Linux, FreeBSD and
NetBSD operating systems as well as ARM based
embedded systems. A few open hardware solutions
are also available.

There are many applications, where Profibus
can help to make our life more comfortable. The
Profibus can be use for example in automatic door
systems, power saving systems, temperature regula-
tion in buildings, etc. Application of this open so-
lution may be appreciated by universities and com-
panies, as it is currently necessary to have very ex-
pensive commercial hardware and software for any
experimentation with Profibus.

Despite these achievements, there are still many
problems to be solved to facilitate use in professional
applications. The future objective is to implement
the Profibus DPV0 layer and to create an unofficial
certification of the implementation. Even though the
slave abstraction layer is working, there is still a lot
of work to be done to improve it. The project will
extend support for new hardware and operating sys-
tems like FreeRTOS and MS Windows. Libraries,
graphical analyzer and other applications will be im-
proved.

The problems related to Profibus are very com-
plex and much effort is required to overcome them.
My hope is that this project will make more people
familiar with this popular fieldbus solution, so the ex-
tent of use of the Profibus standard would not be lim-
ited only to commercial applications. The software
implementation can spread the use of the stan-
dard to applications, where hardware supported so-
lutions are inconvenient or not possible.

References

[1] PBMaster Project, Tran Duy Khanh,
http://www.pbmaster.org

[2] PBMaster - Wiki Pages, Tran Duy Khanh,
http://wiki.pbmaster.org

[3] OMK Project, Pavel Pisa, Michal Sojka,
http://rtime.felk.cvut.cz/omk/, CTU in Prague

[4] uLan Project, Pavel Pisa, Petr Smolik,
http://cmp.felk.cvut.cz/∼pisa/ulan/ul drv.html,
CTU in Prague

[5] ProfiM - Profibus Master, Pavel Trnka, Petr
Smolik, http://profim.sourceforge.net, CTU in
Prague

[6] Debian Project, http://wiki.debian.org/DebianLive

[7] OCERA Project, http://www.ocera.org


