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Abstract

Controller-Area Network (CAN) is a communication bus widely used in industrial and automotive
systems. There exists many CAN drivers for Linux and one of them – Socketcan – is being merged to the
mainline kernel. Another often used driver is called LinCAN. The drivers differ in the internal architecture
and in this paper we provide the results of several experiments that compare latencies introduced by this
two drivers. The aim is to evaluate suitability of these drivers for use in real-time applications.

1 Introduction

CAN-bus (Controller-Area Network) is a communi-
cation bus widely used in industrial and automotive
systems. Not only that it simplifies wirings, but
CAN-bus offers deterministic medium access algo-
rithm for which it is very suitable for certain type of
time-critical applications. A typical CAN-based net-
work consists of multiple microcontrollers and one or
a few more complex nodes which implement higher-
level control algorithms. These more complex nodes
can run Linux OS so there is a need for CAN-bus
drivers. There exist several projects which offer CAN
drivers for Linux. Probably the most known driver is
Socketcan, which is already included in the mainline
kernel. Another option is LinCAN driver. The basic
difference between these two drivers is that Socket-
can is built around standard Linux networking in-
frastructure, whereas LinCAN is a character device
driver with its own queuing infrastructure designed
for specific needs of CAN communication.

The Linux networking infrastructure is designed
with the goal of achieving highest possible through-
put for IP and similar high-bandwidth traffic, which
is almost opposite to the goals of CAN bus – low
bandwidth (CAN messages can hold up to 8 bytes of
data payload) but precise timing. One can naturally
ask whether and how Socketcan’s usage of Linux net-
working layer influences communication latencies.

We have developed a tool for measuring round-
trip times (RTT) on CAN-bus and we have con-
ducted several experiments to evaluate RTT under
different system loads and other conditions with the
two above mentioned drivers.

The results of this work are useful for the follow-
ing reasons:

1. Users can approximately know timing proper-
ties of a particular CAN-on-Linux solutions.

2. Developed tools can be used for benchmarking
other hardware to find suitability for intended
applications.

3. Driver developers can profile and improve their
drivers and find factors contributing to worst-
case delays in RX/TX paths.

4. Overhead caused by the use of generic Linux
networking infrastructure in Socket-CAN im-
plementation was quantified. Our finding is
that the difference is not negligible, but it is
still suitable for many real-time applications.

1.1 CAN description

CAN is a serial bus introduced in 1986 [1] by Robert
Bosh GmbH. It uses a multi-master protocol based
on a non-destructive arbitration mechanism, which



grants bus access to the message with the highest
priority without any delays. The message priority is
determined by the message identifier, which identifies
the content of the message rather than the address
of the transmitter or the receiver.

Physical layer has to support transmission of two
states – dominant and recessive. If no node trans-
mits dominant state, the medium should remain in
recessive state. Whenever any node transmits domi-
nant state, the medium should be in dominant state.
This property (sometimes called “wired OR”) is used
by the medium access control (MAC) layer to ac-
complish the non-destructive arbitration mechanism.
All nodes transmit bits synchronously and during
transmission of the message arbitration phase the
node checks for a difference between transmitted and
medium states. If a difference is found, the node
backs off. Since the arbitration requires synchronous
bit transmission and the signal propagation speed is
finite, the length of the bus is limited. For 125 kbit/s
the maximum bus length is 500 m, for the maximum
speed 1 Mbit/s, it is 30 m.

The message identifier, which is transmitted in
message arbitration phase is either 11 or 29 bit long
depending on whether extended message format is
used. The length of the data payload can be up
to 8 bytes and every message if protected by 15 bit
CRC. Every message is acknowledged by an ACK bit.
Transmitter transmits a receive bit and all receivers
with correctly received message transmit that bit as
dominant. This way, if no receiver is able to receive
the message correctly, the transmitter can signal er-
ror to the upper layers.

2 Internal architecture of the

drivers

In this section we briefly describe internal architec-
ture of the tested drivers, especially the TX and RX
paths, which mostly influence the time needed to pro-
cess transmitted and received messages.

2.1 LinCAN

LinCAN driver presents CAN devices as charac-
ter devices /dev/canX. Applications use the driver
through the standard UN*X interface represented
by the five functions: open(), read(), write(),
ioctl() and close(). The heart of the driver is a
flexible queuing infrastructure [2], which allows the
driver to be used simultaneously from userspace, IRQ
handlers and RTLinux programs. For every user of

the driver (open file descriptor in userspace or an
RTLinux application), there one queue for message
transmission and one for reception.

The queue has preallocated a fixed number of
slots to hold received messages or messages waiting
for transmission. By default every queue can hold up
to 64 messages. The queuing infrastructure does not
support message ordering according to their priority,
but there is (currently unused) support for having
multiple queues for different priorities.

LinCAN is distributed as a out-of-tree driver and
there are no plans to push it to mainline.

2.1.1 Transmit path

To transmit a message, the application calls write()
system call on a /dev/canX file descriptor. This op-
eration executes can_write() which stores the mes-
sage in the queue and wakes the chip driver to send
the messages in the queue. The driver simply sends
out the message from the queue. If the chip is busy
by sending the previous messages, nothing happens
and the queue is processed later when TX completion
IRQ arrives.

2.1.2 Receive path

Interrupt handler reads the message and copy
it directly from the IRQ context to all the
queues connected to the particular device
(canque_filter_msg2edges()). Then any readers
waiting in read() system call are woken up.

2.2 Socketcan

Socketcan is a driver built around Linux network-
ing infrastructure. As of 2.6.31, most of it is al-
ready merged into the mainline. Besides the drivers
themselves, Socketcan implements several higher-
level protocols (BCM, ISO-TP and raw) and pro-
vides useful userspace utilities. Applications access
the socketcan functionality through BSD sockets API
which is commonly used for network programming
not only in the UN*X world.

2.2.1 Transmit path

After the message is sent through sendmsg() or
similar system call, it is passed to can_send(),
which queues it in the device queue by calling
dev_queue_xmit(). This function uses a queuing
discipline (qdisc) to queue the message in the driver



TX queue. The default qdisc is pfifo_fast with
the queue length of 10. When a message is enqueued
qdisc_run() is called to process the queue. If the
driver is not busy transmitting another message, it
transmits it immediately, otherwise the qdisc’s queue
is appended (see __netif_reschedule()) to a per-
CPU queue and processed later in NET_TX_SOFTIRQ.

2.2.2 Receive path

Interrupt handler reads the message1 and calls
netif_rx() which queues the message in per CPU
softnet_data queue and schedules NET_RX_SOFTIRQ
for later processing. It is important to know that this
queue is shared for all kinds of network traffic, not
only for CAN.

The softirq runs net_rx_action() which polls
the softnet_data queue in process_backlog(),
and calls netif_receive_skb() for every message
there. Note there is also rate limiting in this softirq,
so if there are many packets from other sources, our
CAN messages are delayed by additional delays.

Within netif_receive_skb() the list of regis-
tered packet types is traversed and the message is
passed to the handler, which, in case of socketcan, is
can_rcv().

can_rcv() traverses the list of sockets and deliv-
ers the message to all sockets interested in receiving
the message. For raw sockets this is accomplished by
calling raw_rcv() which clones the socket buffer and
calls sock_queue_rcv_skb(), which copies the data
to the socket receive queue by skb_queue_tail()

and userspace is woken up in sock_def_readable().

3 Testing

As one can see from the description of the driver
internals in the previous section, TX and especially
RX path is considerably more complicated in case of
Socketcan. Given the fact, that CAN message is up
to 8 byte in length, maximum bitrate is1 Mbit/s and
deterministic timing is often required, the question
which we try to answer in this paper is whether the
Socketcan overhead is not too high for serious use.

3.1 Testbed description

To answer the question, we have set up a testbed
to compare the drivers under the same conditions.
The testbed was a Pentium 4 box with a Kvaser
PCIcan-Q (quad-head PCI card based on SJA1000
CAN controller). The CPU is a single core and sup-
ports hyper-threading (HT).

In most experiments, we measured the round-
trip time (RTT) i.e. the time it takes to send the
message to the other end and back. To measure the
RTT we used canping tool 2. It send the messages ac-
cording to command line switches and measures the
time elapsed until receiving a response. The next
message is sent after a response to the previous one
is received. The measured times are statistically pro-
cessed and histograms can be generated from them.
To access the CAN driver, canping uses VCA (Vir-
tual CAN API) library3, which, which provides com-
mon API for different driver back-ends.

FIGURE 1: Testbed setup

We simply connected CAN card’s output 1 with
output 2 (see Fig. 1) and run two instances of can-
ping on one computer – one in slave mode to only
respond to messages generated by the second can-
ping in master mode. Both instances was run with
real-time priority and have locked all their memory
(mlockall()).

In every experiment, we sent ten thousands mes-
sages. We have repeated all the experiments with
several different kernels. For real-time application
it is natural to measure the performance under rt-
preempt kernels, but for other use, results for non-rt
kernels can also be useful.

For all testes CAN baudrate was set to 1Mbit/s
and all messages carried 8 fixed bytes of data pay-
load. The length of messages was measured on oscil-
loscope to be 112µs, but every message is followed
by 7 recessive end of frame bits and 3 bits of in-
ter frame space. Therefore the shortest possible bus
time needed for sending the message forth and back
is 2 ∗ (112 + 7) + 3 = 241µs.

1This is true for sja1000.c driver. Other drivers, such as mscan.c read the messages entirely in softirq.
2http://rtime.felk.cvut.cz/gitweb/canping.git
3http://ocera.cvs.sourceforge.net/viewvc/ocera/ocera/components/comm/can/canvca/libvca/



The computer didn’t run unnecessary services
such as cron. Also irqbalance daemon was not
running so that the interrupts went always to the
first CPU (hyper-threading). Since there were some
differences in results depending on whether hyper-
threading was used or not, we also run the tests
on kernels with maxcpus=1 command line parame-
ter. Such test are marked by :maxcpus=1 suffix to
kernel version.

All tests were run at full CPU clock speed, which
was 2.4GHz, as well as at the lowest one (300MHz)
by which we try to simulate an embedded system,
where CAN is used a lot.

All tests used socketcan from trunk at SVN revi-
sion 1009. The exception is the kernel 2.6.31-rc7, for
which the version in mainline was used. For LinCAN
we used a version from CVS dated 2009-06-11.

3.2 Results

To graph the results, we use so called latency pro-
files. It is a cumulative histogram with reversed ver-
tical axis displayed in logarithmic scale. This way
we can see the exact number of packets with worst
latencies at the bottom right part of the graph. You
can see it in Figure 2, where we measured RTT on
an unloaded system. It can be seen that the LinCAN
has lower overhead that Socketcan, which was an ex-
pected result. Another observation is that worst-case
driver overhead is approximately the same as mes-
sage transmission time. For LinCAN the overhead is
450−241 = 209 µs, for Socketcan 525−241 = 284 µs.
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FIGURE 2: Round-Trip Time on the un-

loaded system, 2.4GHz

If the CPU frequency is lowered to 300MHz, then
the overhead is much larger for both LinCAN and
Socketcan (Fig. 3).
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FIGURE 3: Round-Trip Time on the un-

loaded system, 300 MHz

Since Socketcan shares the RX path with the
other parts of Linux networking stack, in the next
experiment we tried to measure how other network
traffic influences CAN latency. We generated Eth-
ernet load to the CAN testbed from another com-
puter. The used Ethernet card was Intel’s e100

(100Mbps). We tried the following load types: flood
ping, flood ping with 64 kB datagrams and TCP load
(high bandwidth SSH traffic). It turned out that the
worst influence was caused by flood ping with 64 kB
datagrams (see Fig. 4). With default system con-
figuration both drivers exhibit additional latency of
approximately 300 µs.

However, under -rt kernels, most interrupt han-
dlers run in thread context and it is possible to set
the priority of those IRQ threads. Therefore we
increased the priority of the IRQ thread handling
our CAN card interrupts (the interrupt line was not
shared with any other peripheral). The results can
be also seed in Fig. 4 – lines marked as “boosted IRQ
prio”. As can be seed, LinCAN latency goes down
to the same values as without any load. Socketcan
is not influenced by this tuning at all.

Socketcan has another parameter which can be
used to tune packet reception – netdev_budget

sysctl. By this knob, one can tune how many
received packets is processed in one run of
NET_RX_SOFTIRQ. The default value of this param-
eter is 300 and as can be seen again in Fig. 4, chang-
ing this value has no effect on the Socketcan la-
tency. Further investigation showed that with our
tests there were rarely more that 10 pending packets
and since softirqs are re-executed up to 10 times if
they are pending at the time they finish execution,
even lowering budget to 1 had no effect.
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For the sake of completeness, we also tested
whether Ethernet transmission influences CAN la-
tency. As can be seen from Fig. 5, there is almost no
influence by this type of load.
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Also, there is almost no influence by non-realtime
CPU load, which was generated by hackbench tool4

(Fig. 6).
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loaded by hackbench -pipe 20

While testing the drivers on non-rt kernels, the
worst-case latency was usually very high as can be
seen in Fig. 7. In this particular experiment, Sock-
etcan experienced one 22ms delay, but in other ex-
periments this happened even to LinCAN. We didn’t
investigated the source of this latency in detail, but
it was probably caused by ath5k driver because af-
ter unloading this driver, this latency “peaks” disap-
peared.
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FIGURE 7: Round-Trip Time on the un-

loaded system, 2.4GHz, non-rt kernel

When we unloaded all unnecessary modules from
the kernel, the latencies went down for LinCAN (see
Fig. 8). The reason is that LinCAN does all the RX
processing in hard-IRQ context, whereas Socketcan
employs a soft-IRQ which is shared by all network
devices.

4http://devresources.linux-foundation.org/craiger/hackbench/
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Another interesting results result is performance
of virtual CAN drivers. This driver can be used to
test CAN applications on places where real CAN
hardware is not available. It seems there is some
problem with how Socketcan implements this. Un-
der Debian kernel 2.6.26-2-686, which is configured
with PREEMPT_NONE=y, Socketcan latencies raised up
to 550ms (Fig. 9).
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FIGURE 9: Round-Trip Time on virtual

CAN driver

On kernel 2.6.31-rc7, the results seem also
strange for Socketcan (Fig. 10). For all other ker-
nels the results were as expected – worst-case latency
around several hundreds microseconds.
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Last but not least, people are continuously im-
proving Linux network stack and under kernel 2.6.31-
rc7, the performance of Socketcan in only slightly
worse that of Lincan (see Fig. 11).
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FIGURE 11: Round-Trip Time on recent

kernel and unloaded system

The complete results of all tests for several dif-
ferent kernels can be found on our web page5. If
somebody would like to reproduce our results all the
code, configurations etc. is available from Git repos-
itory6.

4 Conclusion

The experiments described in this paper show the
differences between two distinct approaches to writ-
ing Linux CAN driver – character device and network
device. In most cases the character device approach

5http://rtime.felk.cvut.cz/can/benchmark/1/
6http://rtime.felk.cvut.cz/gitweb/can-benchmark.git



has lower overhead but it seems that recent improve-
ments in Linux kernel decrease the overhead of the
network device approach.

One area where character based drivers still win
is when the system is loaded by receiving non-CAN
traffic. Under preempt-rt kernels, one can increase
the priority of the IRQ thread which handles the
CAN hardware and latencies go down with character
device approach, whereas network device approach
exhibits higher latencies regardless of IRQ thread
priority. When compared to the case with without
non-CAN traffic, the worst-case latency is approxi-
mately doubled. This values can be still suitable for
most real-time applications. If this latency is not ac-
ceptable, one would need to split the queue between
hard- and soft-IRQ to several queues of different pri-
orities with CAN messages going to the high-priority

queue and all other traffic to queues with lower pri-
orities.

Finally, we found that timing of Socketcan’s vcan
driver is quite odd under some kernels. It seems, it
has some connection to CPU scheduling and it needs
to be further investigated and fixed.

References

[1] CiA, “CAN history,” 2001. [Online]. Available:
http://www.can-cia.org/index.php?id=161

[2] P. Ṕı̌sa, “Linux/RT-Linux CAN driver
(LinCAN),” 2005. [Online]. Available:
http://cmp.felk.cvut.cz/ pisa/can/doc/lincandoc-
0.3.pdf


