
A Flexible Sheduling Framework SupportingMultiple Programming Models with Arbitrary Semantis in Linux�Noah WatkinsSystems LabUC Santa Cruzjayhawk�soe.us.eduJared Straub and Douglas NiehausInformation and Teleommuniation Tehnology CenterUniversity of Kansas, Lawrene, Kansas 66045iqrally�itt.ku.edu, niehaus�itt.ku.eduAbstratWe present a hierarhi sheduling framework for Linux alled Group Sheduling that failitates thereation of arbitrary thread shedulers. Traditional approahes to developing new sheduling semantisrequire semanti mappings onto existing shedulers, suh as stati-priority. Group Sheduling allows for adiret implementation of semantis, allowing lear mappings at any level a developer desires. In order toe�etively support sheduling semantis, integration with onurreny ontrol is neessary (e.g. priorityinheritane). However, when onsidering arbitrary sheduling semantis hard-wired solutions suh as PIan't adapt. We present Proxy Exeution as a general mehanism to resolving poliy onits that ariseas tasks from di�erent sheduling domains interat through the RT-Mutex primitive.1 IntrodutionThe reent and ontinuing evolution of omputer sys-tems and their appliations exhibits a signi�ant se-manti explosion. The apabilities of omputer sys-tems ontinue to grow rapidly at the hardware level,and the range of appliation semantis is keepingpae. However, where hardware enhanements of thepast have entered around inreased hip frequenies,today we are seeing an inreased degree of parallelismpresent in single systems. E�etively exploiting thisparallelism in many instanes requires that a systemsupport diverse appliation semantis and reon�g-urability.Semanti diversity and reon�gurability of a sin-gle system means that the system supports multipleappliation semantis, that the set of semantis usedby appliations exeuting on a system an be reon-

�gured, and that appliations with di�erent seman-tis an oexist. For example a single system shouldbe apable of supporting relatively familiar applia-tion semantis suh as deadline, rate, priority, andCPU share based semantis, in addition to exper-imental and emerging semantis that may inludeappliation progress or other semantis that do notmap well onto traditional sheduling poliies. More-over, the set of appliations on a system annot onlyrequire a wide variety of exeution semantis throughreon�gurability, but in fat may require many orall of those semantis simultaneously. Single systemsupport of multiple semantis an also redue hard-ware osts by replaing several separate systems witha single physial platform that aurately supportsthe semantis of all appliations.In omparison to the huge amount of hangein system hardware support, the semantis of the�The work presented here was supported in part by NSF grants CNS-0716740 and CCF-06150351



programming models provided by modern operat-ing systems has sarely hanged in the last 30years. Threads are still typially sheduled with dy-nami priority semantis 1, and onurreny is mostommonly ontrolled using semaphores. Some ex-pansion of semantis in sheduling and onurrenyontrol has, of ourse, ourred in the past threedeades. In partiular, ondition variables, reader-writer loks (inluding RCU), queuing semaphores,and monitors have expanded the onurreny on-trol domain, while rate-monotoni analysis and EDFhave expanded the availability of sheduling seman-tis in systems with stati semanti on�gurations[1,2℄. Nonetheless, it is fair to say that a softwaredeveloper transported from 1980 would have far lessdiÆulty reognizing and understanding the seman-tis of sheduling and onurreny ontrol o�ered bymodern operating systems than they would the hard-ware supporting today's mix of operating systemsand appliations.1.1 The Growing Semanti GapThe semanti gap between appliations and operat-ing systems is growing for two major reasons. First,the diversity of appliations is expanding as heap,powerful hardware begs to be used in new, imagi-native ways. The seond fore fueling this semantidivide is the tremendous inertia the dynami prior-ity programming model has in modern operating sys-tems due to widespread deployment, maturity, andsimpliity. Deades of sheduling researh and real-time system development have been done in environ-ments implementing priority models, and this modelis taught to all students of omputer siene.While we do argue that a tremendous problem isarising with an inreasingly large semanti gap, wein no way argue against the importane of priority-based programming models. On the ontrary, pri-ority programming models are by far the dominantmodels, and in an important sense a vitim of thetheir own suess. Many appliations exhibit pri-ority semantis diretly, and many other appliationsemantis are easily mapped onto the priority model.Conurreny ontrol mehanisms developed assum-ing priority-based sheduling are onvenient and eas-ier to develop. Finally, and perhaps most impor-tantly, developers of new appliations with new se-mantis often have no alternative to mapping theirsemantis onto priority. This lak of hoie may bea result of having no aess to OS soure, or theprospet of developing a new sheduler may pose an

insurmountable barrier to developers beause of timeonstraints, or lak of expertise. Bold developerssometimes use omplex middleware solutions map-ping appliation semantis onto traditional stati-priority programming models. However, as appli-ation semantis beome more sophistiated and di-verse, the required mappings beome more diÆultand ostly to reate.1.2 Bridging the GapA ommon pattern has emerged due to the greatdiÆulty of hanging the semantis of programmingmodels exported by an operating system. Pratition-ers ommonly assume that they will have to use oneor more of the following tehniques: (1) adaptation oftheir appliations to use priority semantis, (2) ma-nipulation of priorities to fore the desired semantisat the user-level, or (3) using onurreny ontrolmehanisms for their sheduling e�ets. These teh-niques have often proved to be good enough on dedi-ated systems where reasoning about a single seman-tis, or several simple semantis is a tratable prob-lem. However, the explosive growth in appliationsemantis, and the ombination of semantis oex-isting on a single system, is making suh approahesinreasingly diÆult. Even worse, researhers areinreasingly interested in programming models thatmake it easier to formally model and verify appli-ation behavior. Continuing to bridge the seman-ti gap by mixing and mathing indiret methodswill not sale as the resulting omplexity will be toogreat. An alternative approah is to diretly imple-ment appliation semantis, allowing developers tohoose the appropriate level at whih semanti map-pings our.Methods for diretly implementing a wide rangeof appliation semantis, and for speifying how theoniting demands of appliations with di�ering se-mantis an be reoniled, would greatly simplifymuh of the aidental omplexity inurred by teh-niques suh as indiret semanti mappings. Whilediret implementations do not redue the inherentomplexity of appliation semantis, a diret imple-mentation signi�antly redues the omplexity addedby indiret methods, and failitates modelability.1.3 Group ShedulingGroup Sheduling 2(GS) is a pratial approah tohierarhi sheduling whih emphasizes diret repre-1The introdution of the CFS sheduling lass as a replaement for the SCHED OTHER implementation is a step in theright diretion, away from multiplexing many semantis into a priority-based sheduler2



sentation of omputation struture and diret imple-mentation of appliation semantis [6℄. For manyyears Group Sheduling has been used for a widevariety of projets, proving apable of desribing abroad set of appliation semantis, and expressingsystem level poliies suh as how to balane onit-ing demands from di�erent appliations. The use ofGS redues appliation implementation omplexityompared to using indiret methods beause devel-opers are free to express semantis in ways appropri-ate for a given appliation.This paper desribes the most reent extensionof Group Sheduling, whih has integrated shedul-ing with the semantis of the RT-Mutex onurrenyontrol primitive. This work builds upon, and signif-iantly generalizes, the onurreny ontrol approahused in CONFIG PREEMPT RT [4℄.Our approah, whih we all Proxy Exeution,employs a general representation of mutex blokingrelations, and provides hooks into whih ustomizedroutines may be plugged to make deisions suh asgranting mutex ownership on release, and permissionto steal 3. The goal of Proxy Exeution is to shed-ule owners of mutexes in suh a way that desirabletasks bloked on mutexes are made runnable as soonas possible. A ommon solution, and the one used inCONFIG PREEMPT RT, is to implement the prior-ity inheritane protool. However, unlike PI, ProxyExeution works independently of sheduling seman-tis, and resolves poliy onits that ross shedul-ing domains. While Proxy Exeution is a simple idea,the implementation is ompliated by a number offators. These inlude the maintenane of blokinggraphs, memory alloation requirements, and limita-tions on onurreny inurred during maintenane ofthe graph.Proxy Exeution does not yet integrate all formsof onurreny ontrol, but we believe that the ap-proah we have taken to the integration of shedulingwith onurreny ontrol already provides a platformwithin whih a wide range of programming modelsemantis an be diretly implemented, inluding alarge number of sheduling algorithms popular in theresearh ommunity that are urrently implementedin speialized kernels, or in Linux using ad-ho meth-ods and evaluated with miro-benhmarks.The availability of a ommon platform withinwhih a wide range of algorithms and ompeting se-mantis ould be implemented would be a signi�-ant advantage in failitating aurate omparisons.Sine eah algorithm ould be tested using idential

system on�gurations, system performane measure-ments an be taken to aurately reet the hara-teristis of a partiular algorithm or sheduling pol-iy. Many methods exist for olleting performanerelated information on Linux-based systems, bothin user-spae and within the kernel. Commonframeworks inlude FTrae, LTTng, SystemTap, andKprobes. In this paper we make referene to one suhframework alled DataStreams, developed and usedby the KUSP researh group.The remainder of this paper is organized as fol-lows. First we briey explore related work. Nextwe provide a bakground and motivation for the de-velopment of Proxy Exeution, and desribe its im-plementation in Linux. Finally we provide a sam-pling of programming models implemented in GroupSheduling to illustrate its power and generality.2 Related WorkThe original Group Sheduling [5,6℄ framework wasbuilt in the 2.4 Linux kernel, and represented all om-putation types suh as hard-IRQs, soft-IRQs, andtasklets, as members in the hierarhy. However, inthis version integration of sheduling semantis withonurreny ontrol was not addressed.The work of [3℄ adapted the Group Shedul-ing framework to funtion on top of CON-FIG PREEMPT RT, whih in turn uni�ed all om-putations as threads, allowing a simpli�ation of theGroup Sheduling framework's treatment of ompu-tation types. This work also introdued integratedonurreny ontrol with a limited form of Proxy Ex-eution that required an SDF to onsider a threadbloked on a mutex. Knowledge of bloking rela-tionships then allowed the framework to alulatethe orret task to run to resolve the onit. Thisform of Proxy Exeution did not support shedulingalgorithm optimizations suh as removing a blokedtask from its run-queue, nor did it address supportfor SMP systems.The sheduling stak introdued at the sametime as the Completely Fair Sheduler represents a�rst attempt at supporting multiple sheduling do-mains in Linux. However, the strit preedene or-der of sheduling domains and hard-oded assump-tions of a priority sheduling model in the RT-Mutexframework are not exible enough to support arbi-trary semantis.2Group Sheduling in this paper does not refer to the kernel faility groups, one named Group Sheduling3stealing 3



Priority inheritane and priority eiling are las-si approahes to solving the problem of priority in-version [7℄. The RT-Mutex in Linux implements thepriority inheritane protool [4℄, however neither so-lution e�etively supports a general sheduling pol-iy, and fores developers to map all poliies onto pri-ority, further ompliating the situation when multi-ple poliies are simultaneously ative on a system.3 ImplementationWe desribe our implementation of Proxy Exeution,inluding the extensions to the RT-Mutex frame-work, and the integration of these extensions withGroup Sheduling to support Proxy Exeution. Webegin with a brief overview of the Group Shedul-ing framework, and provide a detailed motivation forProxy Exeution. Then we desribe Proxy Manage-ment, whih is our set of extensions made to the RT-Mutex primitive that support Proxy Exeution. Fi-nally, we provide a detailed view of Proxy Exeutionand it's use within the Group Sheduling framework.3.1 BakgroundGroup Sheduling is a hierarhi sheduling frame-work onsisting of the following omponents: (1)sheduling deision funtions (SDFs), (2) groups ofomputations, and (3) sheduling data. An SDF isan implementation of a spei� sheduling seman-tis (e.g. stati-priority or EDF), and ontrols theomputations of a group, that is, a group representsa set of omputations sheduled aording to thesheduling semantis implemented by the ontrollingSDF. A omputation is represented as a member ofa group, and may be a thread or another group (al-lowing a hierarhi struture). And �nally, arbitrarysheduling data may be assoiated with both groups,and members of groups.Sheduling Deision FuntionsThe idea of an SDF is analogous to a sheduling lassin the Linux kernel. Like a sheduling lass an SDFis implemented by �lling in generi funtion point-ers. In fat, Group Sheduling has reused many ofthe sheduling hooks used in the implementation ofthe existing Linux sheduling framework.An SDF itself is only an implementation of asheduling semantis, and like a sheduling lasswhih operates on a run-queue of tasks in a shedul-ing domain, an SDF too must operate with a set of

omputations. Group Sheduling organizes ompu-tations into groups, where a omputation may be athread, or another group. A group must also be asso-iated with exatly one sheduling deision funtion,whih ontrols the semantis by whih the groupmembers are sheduled.GS Hierarhy EvaluationAs disussed, groups are omposed of omputations,whih may inlude other groups. This allows a setof groups to be organized in a hierarhi struture,with a single root group. When a sheduling deisionis made the hierarhy is traversed starting with theroot group. As the hierarhy is traversed, eah groupevaluates its assoiated sheduling deision funtionover its members, returning a group, a thread, or aontrol message suh as no deision. This organi-zation is very general, allowing multiple shedulingsemantis to be ative on a system simultaneously,but poses diÆult problems for resolving onitsbetween tasks as they interat through shared re-soures. In this paper we onsider a shared resoureto be represented by a semaphore, and a onit torefer to a bloking relationship between a waiter andan owner of a semaphore.An example hierarhy is shown in Figure 1. Theroot group is labeled SEQ, short for sequential SDF,and implements a semantis that hooses the �rstrunnable task in a queue. When this hierarhy isevaluated eah member is reursively evaluated untila runnable thread is found. Threads are depited bythe squares labeled T1 through T6. The group la-beled Linux represents a sheduling deision made byLinux through the evaluation of the standard Linuxsheduling lasses.
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FIGURE 1: Balaned Progress Hierarhy4



Resolving Poliy ConitsGroup Sheduling allows for a ompletely general or-ganization of sheduling semantis to exist on a sys-tem. However, onsider one ommon type of onitthat results from suh a exible on�guration. Sup-pose a task sheduled under a stati priority poliybloks on a mutex owned by a task sheduled un-der CPU reservation poliy. Resolving this onitin the general ase is very diÆult as no general de-ision funtion an be reated to ompare arbitrarypoliies. The solution that Group Sheduling pro-vides is alled Proxy Exeution. Proxy Exeutionis a general mehanism for resolving suh onits.However, �rst let us examine how Linux resolves on-its between distint sheduling domains.Linux implements two main sheduling lasses,the real-time stati priority sheduler, and the om-pletely fair sheduler. These two lasses are orga-nized in a stak with a strit ordering of impor-tane. Spei�ally, the real-time lass is always on-sidered �rst, followed by the CFS lass, and �nallythe lass whih always hooses the idle thread. In or-der for Linux to e�etively support the overall, sys-tem sheduling poliy implied by the strit orderingof sheduling domains a mehanism must be in plaeto resolve the onit that result when the exeutionof a thread from one sheduling domain is blokedby a thread from another domain, the most impor-tant ase in Linux being a real-time task bloking ona mutex owned by a task sheduled under the CFSpoliy.The solution used in Linux is to implementthe priority inheritane protool, thereby integrat-ing sheduling semantis with onurreny ontrol.However, the priority inheritane protool is only ap-pliable to tasks sheduling under priority semantis,thus the PI mehanism alone annot resolve suh apoliy onit. The solution used is two-fold: (1) alltasks are apable of being moved into the real-timesheduling lass (i.e. a priority �eld exists in thetask strut), and (2) a strit separation of priorityexists between threads in the real-time domain, andthose in the CFS domain. Given these properties thelever solution is to simply observe alterations to atask's priority value and automatially move a taskfrom the CFS domain to the real-time domain, andvie versa, depending on whih range a priority fallsinto, either the real-time lass or the CFS lass. Thismehanism utilizes the e�ets of the PI protool toahieve a more omplex system poliy. In the generalase this problem is very diÆult to solve, and anysolution is likely to fail if it builds on top of exist-ing forms of integration that assume spei� system

poliies, suh as priority.One very important aspet of the solution im-plemented in Linux is worth onsidering, notably themovement of a task from one domain to another as aomponent of the solution to resolve poliy onitsbetween domains. In fat, Proxy Exeution uses asimilar method, but generalizes the implementationand addresses some short-omings with the existingLinux mehanism. Spei�ally, the movement of atask from one domain to another implies that eahtask be apable of moving, that is, have the properdata strutures. However, in Group Sheduling arbi-trary and dynamially alloated sheduling parame-ters an be assoiated with omputations, thus theoverhead of supporting a omputation's diret move-ment between any task would require modi�ationto all member omputations as a result of updat-ing a single group's on�guration. Seond, GroupSheduling plaes no restrition on the number ofgroup memberships a omputation may have. Thatis, a thread may belong to multiple sheduling do-mains. Obviously, the onerns are similar to that ofdiret task movement, but more importantly, the or-der of hierarhy traversal is non-deterministi, thusall memberships must be persistent.3.2 Integrated Conurreny ControlLinux integrates priority sheduling semantis withonurreny ontrol by hard-wiring an implementa-tion of the priority inheritane protool into the RT-Mutex primitive. Through priority boosting CON-FIG PREEMPT RT implements a limited form ofproxy exeution, while sheduling semantis are fur-ther integrated into the RT-Mutex implementationduring lok release and stealing operations by usingpriority spei� deision funtions. These two om-ponents, proxy exeution and semanti integration,form what we refer to as a omplete integration ofsheduling semantis with onurreny ontrol. Ageneral omplete integration thus requires a generaltreatment of both omponents.The integration of sheduling semantis withonurreny ontrol is illustrated by the priority spe-i� deision funtions used in the RT-Mutex imple-mentation. During lok release the highest prior-ity waiter is hosen to beome the pending owner,and the priority of a task is again ompared to apending owner to determine if a lok an be stolen.The former operation involves a funtion evaluatedover all waiters on a mutex, and the later is a om-parison made between two tasks. Group Shedul-ing generalizes these deisions using hooks in theRT-Mutex implementation that an be �lled in with5



Group Sheduling funtions that diretly implementspei� sheduling semantis.A general treatment of proxy exeution requiresa general representation of the bloking relationsthat exist between tasks interating through a mu-tex. In PREEMPT RT these relations are impliitlyrepresented through priority boosting. The natureof the priority inheritane protool allows for a sim-ple implementation that aumulates the maximumwaiter priority at eah mutex, and passes the maxi-mum priority value onto the owner. This mehanismis attrative beause of its onstant memory require-ments and simple internal onurreny ontrol, butit masks individual bloking relations making it diÆ-ult or impossible to implement semantis with moreomplex requirements, suh as CPU bandwidth lim-iting, whih requires expliit links between a blokedtask and its proxy in order to orretly perform re-soure aounting.Group Sheduling uses a faility alled ProxyManagement to reate and manage expliit represen-tations of bloking relationships. These relationshipsare then used by the Group Sheduling framework toimplement Proxy Exeution.3.3 Proxy ManagementProxy Management refers to the set of GroupSheduling extensions built into the RT-Mutexframework that trak bloking relations betweentasks. The di�erene between Proxy Managementand Proxy Exeution is that Proxy Managementrefers to the representation, onstrution, and main-tenane of task-to-task bloking relations, whileProxy Exeution refers to the use of this informa-tion in Group Sheduling to resolve sheduling poliyonits.There are two types of bloking relations trakedby Proxy Management. The �rst is the relation thatdesribes a task being bloked, either diretly or in-diretly, on another task holding a resoure. Theseond type of relation maintained by Proxy Man-agement is the proxy relation. This relation is alsoa bloking relation, but represents the �rst onitthat must be resolved in order to "unblok" a taskas soon as possible. While a task may be a part ofany number of bloking relations, it is always asso-iated with exatly one proxy relation. Intuitivelya proxy relation traks the head of a given lokinghain, however in pratie determining a proxy is aniterative proess that involves walking the lok hain.The implementation of Proxy Management usestwo distint data strutures, one to represent generi

bloking relations, and a seond to represent proxyrelations. Additionally, hanges to the task strutand existing RT-Mutex data strutures were nees-sary.3.3.1 Bloking Graph RepresentationConeptually a bloking graph is a set of bloking re-lations linked together to reet the state of a lokinghain. Bloking graphs in ProxyManagement expli-itly represent all bloking relations in a hain, bothdiret and indiret, by linking together data stru-tures representing single bloking relations. Thedata struture used to represent a bloking relation isthe Waiter Node. This struture represents a blok-ing relation between two tasks, T1 and T2, and a lokL1, where T1 is the owner of L1 and T2 is bloked, ei-ther diretly or indiretly on L1. Consider the graphin Figure 2. This �gure depits two indiret, and fourdiret, bloking relations represented by the nodeslabeled N2;3;4;5.A Proxy Relation refers to the bloking relationthat exists between a bloked task, and the owner ofthe mutex at the head of the bloked task's lokinghain. This type of relation is represented by theProxy Waiter struture. For example in Figure 2four proxy relations exist between tasks T2;3;4;5 andT1, the owner of the lok L1 at the head of the hain.The proxy relation data strutures in Figure 2 are la-beled W2;3;4;5. Eah of the dashed lines in the �gurerepresent linked lists that are used to organize theProxy Management data strutures, and their asso-iation to eah other and to the existing omponentsof the RT-Mutex framework.
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FIGURE 2: Proxy Management datastruture representation6



3.4 Proxy ExeutionProxy Exeution is the Group Sheduling mehanismused to resolve arbitrary sheduling onits thatarise when a task bloks on a mutex. Consider thestate of the system shown in Figure 2 in whih tasksT2;3;4;5 are bloked on task T1. A Group Shedulingpoliy that selets one of these bloked tasks as themost desirable task will use Proxy Exeution to re-solve this onit by instead running T1 as a proxy ofthe desired bloked task. Notie the orrespondenebetween task T1 and the Proxy Relation assoiatedwith eah bloked task. In fat, Group Shedulingimplements Proxy Exeution using the proxy rela-tions reated by the Proxy Management framework.Proxy relations alone annot be used to imple-ment Proxy Exeution beause a proxy relation rep-resents a sheduling poliy agnosti view of a blok-ing relation. That is, it reets only the task-levelview of a relation. This is in onit with the goalsof Proxy Exeution whih by de�nition resolve on-its between spei� sheduling poliies. Addition-ally, two tasks on a system an be involved in at mosta single bloking relation with eah other. However,Group Sheduling allows tasks to hold membershipsin multiple groups. Thus, a proxy relation at thetask-level orresponds to proxy relations between oneor more Group Sheduling members in possibly dis-tint sheduling domains. Group Sheduling solvesthese problems through the use of avatars.An avatar is a speial-purpose member shed-uled in-plae of a spei� member orresponding toa task bloked on a mutex. An avatar is reated foreah membership of a task assoiated with a ProxyRelation, and may use sheduling parameters iden-tial to those of the task the avatar masqueradesas. Proxy Exeution is thus ahieved by shedulingthe bloking task assoiated with the Proxy Relationthat prompted the reation of the avatar. Intuitivelythe use of an avatar is similar to giving a task tem-porary group membership under a set of di�erentsheduling parameters. In pratial terms an avataris automatially alloated for eah member beausea task an only ever be assoiated with at most oneproxy relation. In ontrast, it is possible that a taskmay need to be sheduled as a proxy, simultaneously,from all sheduling domains.3.4.1 Sheduling HooksAvatars are brought in and out of existene as proxyrelations are reated and destroyed. When a newavatar is reated the appropriate SDF is noti�ed byalling the insert-member hook, and speifying the

avatar as the member being added to the group.Likewise the generi remove-member hook is alledto remove an avatar when a proxy relation is de-stroyed by the Proxy Management framework. AnSDF may examine a member to determine if it isa proxy allowing it to exeute any speial setup ortear-down routines that are required.3.5 RT-Mutex ExtensionsThis setion overs the extensions made to the RT-Mutex framework that implement Proxy Manage-ment. In this setion we refer to proxy relationsthat are reated and destroyed. These terms onveyheavy-weight operations, however in many irum-stanes the implementation is improved by re-usingdata strutures.3.5.1 BlokingBloking on a mutex is an operation that results inthe reation of at least one new proxy relation. Whena task bloks on a mutex a diret bloking relation isalways reated between bloking task and the ownerof the mutex. In addition to the diret bloking re-lation, zero or more indiret relations are reated ifthe bloking task has existing waiters, and when theowner of the lok being bloked on, is also blokedon a mutex. In the later ase the loking hain is"walked" by iteratively examining bloking relationsuntil an owner is found that is not bloked on a mu-tex. In both ases existing proxy relations are de-stroyed and new relations reated as loking hainsare extended.For eah proxy relation that is reated or de-stroyed the sheduling framework is noti�ed by in-serting or removing an avatar assoiated with thea�eted proxy relation.3.5.2 ReleasingThe release of a mutex must be integrated withsheduling in the following ways: (1) the seletion ofa pending owner from among the set of diret waitersis integrated with sheduling, and (2) proxy relationsmust be updated to reet the hange in ownershipof the mutex. First, the seletion of a pending owneris implemented as a hook into the Group Shedul-ing framework that allows the deision funtion tobe dynamially hosen. Seond, the Group Shedul-ing framework must be noti�ed of hanges made toproxy relations.7



Releasing a mutex is a two-step proess that up-dates the proxy relations for all threads waiting onthe mutex to be released. In the �rst step the proxyrelations that exist between all waiters on the mutexand the owner are destroyed, inluding the relationinvolving the newly seleted pending owner. Se-ond, all of the relations exept the one involving thepending owner are re-reated between the originalwaiter assoiated with the relation, and the pendingowner. It is important to note that proxy relationsare reated for a pending owner during release, asopposed to when atual ownership takes plae. Eventhough the hoie of pending owner is integrated withsheduling, no guarantee is made that this hoie willatually be sheduled immediately. Thus, proxy re-lations must be reated to prevent the situation inwhih a pending owner is never sheduled to fullyaquire a mutex.
StealingThe ability to steal a mutex is an optimization re-ated to exploit the window of time between a pendingowner being seleted, and it running to fully aquirethe lok. The stealing operation is integrated withsheduling in a nearly idential way to that of re-leasing a mutex. First, the deision to steal a lokfrom a pending owner must be integrated with GroupSheduling. This deision is implemented as hookthat an be replaed by Group Sheduling. Its se-mantis are dependent on the Group Sheduling pol-iy and on�guration, and must be able to make aboolean valued omparison between tasks of poten-tially di�erent sheduling domains.When a task attempting to steal a lok is deniedpermission to take possession of the lok it immedi-ately bloks on the mutex. If a task does steal a lokthen it must alter any existing the proxy relationsinvolving the pending owner. First, the stealing taskdestroys all proxy relations between waiters on thelok and the pending owner. Seond, the stealingtask re-reates all proxy relations between waiterson the lok and itself.It is possible that a lok be stolen from an ex-isting waiter. This is a speial ase taken are of bytreating the stealing task no di�erently than anotherwaiter. The result is a on�guration of data stru-tures that represent the new owner being a waiter onitself. However, this inonsisteny is resolved beforethe aquiring task re-enables interrupts and releasesthe spinlok proteting aess to the RT-Mutex.

Waiter InterruptionInterruptable mutex operations allow a task to abortaquisition due to timeout, or the delivery of a sig-nal. However, suh an interruption an ause a lok-ing hain to be "broken" at an arbitrary loation.When an interrupted task is positioned at an edge ofbloking graph (i.e. it has no waiters itself) only theinterrupted task's proxy relation is removed. If theinterruption ours within a loking hain the proxyrelation of eah waiter on the interrupted task mustbe updated. Spei�ally, the interrupted task willbeome the new proxy of eah of its waiters, and itis no longer bloked on a mutex.Unlike the extensions to other RT-Mutex op-erations, this operation will onstrain onurrenywithin the loking hain being broken. A waiter thatis interrupted examines all of its waiters, removingany bloking relation between a waiter and a taskup-stream the loking hain from the point at whihthe hain is being broken.4 EvaluationIn this setion the Group Sheduling framework isevaluated in terms of its generality, and the perfor-mane of its implementation. It may be impossibleto deliver a formal proof of omplete generality fora framework suh as Group Sheduling, thus we optfor a showase of shedulers implemented within theframework. The shedulers hosen are illustrativeof the wide variety of semantis supported by theframework inluding lassial shedulers, as well assome exoti breeds. Finally we o�er a brief overviewof the performane harateristis of Group Shedul-ing.4.1 Balaned Progress SDFWe have developed a balaned progress SDF thatshedules its members in suh way that the progressof eah member does not exeed that of other anyother members, within a ertain threshold. Weuse the term progress in a general sense, and itmay take on di�erent meanings in di�erent applia-tions. The spei� appliation we desribe here is thebalaned progress of multiple proessing pipelines,where progress is de�ned by the number of data unitsproessed by a pipeline. For example this may be thebalaned prodution of video frames.8



GS HierarhyFigure 1 shows a typial Group Sheduling hierar-hy used to implement an appliation with balanedprogress semantis. At the root of the shedulinghierarhy is the Sequential SDF that shedules itsmembers in the sequene they appear within thegroup. This is analogous to stati-priority seman-tis. Its use here is to provide the omputations un-der ontrol of the balaned progress SDF prefereneover all other system omputations, denoted gener-ally as the Linux group.Eah pipeline in Figure 1 is shown as a groupof omputations ontrolled under a sequential SDFgroup. Eah group of omputations representing apipeline is in turn a member of the balaned progressgroup. Eah of the balaned progress members, de-noted P1 and P2, represent a pipeline whose progressis to be balaned against other members of the bal-aned progress group. The sheduling parameters as-soiated with eah member in the balaned progressgroup is an integer value representing that pipeline'sprogress. When a pipeline ompletes a unit of om-putation it noti�es the balaned progress sheduler toupdate the sheduling state. The implementation ofthe sheduling deision funtion that fores progressto never be out of syn by more than one unit ofomputation is shown in Program 4.1.Program 4.1 Balaned Progress SDF1 balaned_progress_hoose_next(group) {2 if (progress_is_equal(group))3 return hoose_member(group)4 else5 return least_progress(group)6 endif7 }4.2 Guided ExeutionThe guided exeution programming model was re-ated for what we refer to as deterministi onur-reny testing in whih we provide a method for guid-ing a set of proesses (or threads) into spei� exeu-tion states in order to reate a desired interleaving.A similar tehnique is used by the rt-tester to testexeution senarios within the RT-Mutex frameworkthat are spei�ed as a shedule of operations. Theguided exeution programming model is a generaliza-tion of the same onept, and an be applied to arbi-trary odes using shedules that ross the user/kernelspae boundary.

SDF OverviewThe Guided Exeution SDF shedules members a-ording to a user-spei�ed sequene of exeution on-texts, where an exeution ontext is a tuple onsist-ing a thread identi�er and an opaque ontext objetdesribing a state of exeution for the thread. Anexample of suh a shedule that guides three threadsinto a spei� interleaving is:1 (top): (Thread-A, Context-A1)2: (Thread-B, Context-B1)3: (Thread-C, Context-C1)4: (Thread-B, Context-B2)The SDF treats the sequene of exeution on-texts as a stak where the top of the stak is thetarget ontext. The SDF exeutes a shedule byhoosing the thread assoiated with the target on-text. One a thread has reahed its target ontextthe stak is popped and the next thread in the se-quene is sheduled. A thread is hosen only whenit is assoiated with the target exeution ontext. Inthis way a set of threads an be guided into arbitraryinterleaving.In the above example Thread-A is �rst hosento run until it reahes Context-A1. When the targetontext has been reahed the stak is popped andThread-B is hosen to run until it reahes Context-B1. The shedule ontinues to exeute until allthreads are in the ontext assoiated with their lastappearane in the shedule. For example, Thread-Bis �rst guided into Context-B1, and �nally reahesContext-B2 at whih point the shedule has beenompleted.Guided Exeution Programming ModelTo demonstrate the use of the Guided ExeutionSDF we have built a programming model aroundthe sheduler that expresses an exeution ontext interms of spei� loations within soure ode. Werefer to these loations as way-points. A way-pointis a wrapper around the Group Sheduling API thatis used to inform the Guided Exeution SDF of athread's urrent ontext. Our urrent implemen-tation requires that ode be modi�ed by manuallyinserting way-points, but nothing will prevent way-points from being inserted using automated teh-niques suh as automati ompiler insertion.9



4.3 Other SemantisMany other semantis have been reated using theGroup Sheduling framework, and both existingsheduling lasses in Linux, real-time stati prior-ity and CFS are portable to the Group Shedul-ing framework. Notable shedulers implemented inthe Group Sheduling framework inlude an ExpliitPlan sheduler that is similar to the Guided Exeu-tion sheduler, but uses an expliit shedule of exe-ution periods plaed on a time-line. For example, itis trivial to implement periodi exeution of threadsimplementing a work-loop based programming pat-tern.Another sheduler with omplex semantis im-plemented within the Group Sheduling frameworkis the PTides programming model developed at UCBerkeley as part of the Ptolemy group. This shed-uler implements an ator-based model where atorsommuniate using timestamped events. A modelimplements a spei�ation of a disreet event model.The sheduler is responsible for sheduling an atorto reeive an even only when an event is safe to pro-ess. Portions of the safe to proess analysis an bedone statially, and at run-time sensors and atua-tors relate model time to physial time.5 Conlusions and FutureWorkWe have presented Proxy Exeution, our extensionto the Group Sheduling that supports a general in-tegration of sheduling semantis with onurrenyontrol. While Group Sheduling itself failitatesthe reation of arbitrary programming models, ProxyExeution full integrates the sheduling semantis ofsuh models with the onurreny primitives in a sys-tem, reating a truly omplete solution.The use of Group Sheduling an redue osts byeasing the implementation of omplex appliation se-mantis, and inreases the auray and understand-ability by using diret rather than indiret implemen-tations. Finally, Group Sheduling an be utilized asa framework for omparison of di�erent sheduling
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