
A Flexible S
heduling Framework SupportingMultiple Programming Models with Arbitrary Semanti
s in Linux�Noah WatkinsSystems LabUC Santa Cruzjayhawk�soe.u
s
.eduJared Straub and Douglas NiehausInformation and Tele
ommuni
ation Te
hnology CenterUniversity of Kansas, Lawren
e, Kansas 66045iqrally�itt
.ku.edu, niehaus�itt
.ku.eduAbstra
tWe present a hierar
hi
 s
heduling framework for Linux 
alled Group S
heduling that fa
ilitates the
reation of arbitrary thread s
hedulers. Traditional approa
hes to developing new s
heduling semanti
srequire semanti
 mappings onto existing s
hedulers, su
h as stati
-priority. Group S
heduling allows for adire
t implementation of semanti
s, allowing 
lear mappings at any level a developer desires. In order toe�e
tively support s
heduling semanti
s, integration with 
on
urren
y 
ontrol is ne
essary (e.g. priorityinheritan
e). However, when 
onsidering arbitrary s
heduling semanti
s hard-wired solutions su
h as PI
an't adapt. We present Proxy Exe
ution as a general me
hanism to resolving poli
y 
on
i
ts that ariseas tasks from di�erent s
heduling domains intera
t through the RT-Mutex primitive.1 Introdu
tionThe re
ent and 
ontinuing evolution of 
omputer sys-tems and their appli
ations exhibits a signi�
ant se-manti
 explosion. The 
apabilities of 
omputer sys-tems 
ontinue to grow rapidly at the hardware level,and the range of appli
ation semanti
s is keepingpa
e. However, where hardware enhan
ements of thepast have 
entered around in
reased 
hip frequen
ies,today we are seeing an in
reased degree of parallelismpresent in single systems. E�e
tively exploiting thisparallelism in many instan
es requires that a systemsupport diverse appli
ation semanti
s and re
on�g-urability.Semanti
 diversity and re
on�gurability of a sin-gle system means that the system supports multipleappli
ation semanti
s, that the set of semanti
s usedby appli
ations exe
uting on a system 
an be re
on-

�gured, and that appli
ations with di�erent seman-ti
s 
an 
oexist. For example a single system shouldbe 
apable of supporting relatively familiar appli
a-tion semanti
s su
h as deadline, rate, priority, andCPU share based semanti
s, in addition to exper-imental and emerging semanti
s that may in
ludeappli
ation progress or other semanti
s that do notmap well onto traditional s
heduling poli
ies. More-over, the set of appli
ations on a system 
annot onlyrequire a wide variety of exe
ution semanti
s throughre
on�gurability, but in fa
t may require many orall of those semanti
s simultaneously. Single systemsupport of multiple semanti
s 
an also redu
e hard-ware 
osts by repla
ing several separate systems witha single physi
al platform that a

urately supportsthe semanti
s of all appli
ations.In 
omparison to the huge amount of 
hangein system hardware support, the semanti
s of the�The work presented here was supported in part by NSF grants CNS-0716740 and CCF-06150351



programming models provided by modern operat-ing systems has s
ar
ely 
hanged in the last 30years. Threads are still typi
ally s
heduled with dy-nami
 priority semanti
s 1, and 
on
urren
y is most
ommonly 
ontrolled using semaphores. Some ex-pansion of semanti
s in s
heduling and 
on
urren
y
ontrol has, of 
ourse, o

urred in the past threede
ades. In parti
ular, 
ondition variables, reader-writer lo
ks (in
luding RCU), queuing semaphores,and monitors have expanded the 
on
urren
y 
on-trol domain, while rate-monotoni
 analysis and EDFhave expanded the availability of s
heduling seman-ti
s in systems with stati
 semanti
 
on�gurations[1,2℄. Nonetheless, it is fair to say that a softwaredeveloper transported from 1980 would have far lessdiÆ
ulty re
ognizing and understanding the seman-ti
s of s
heduling and 
on
urren
y 
ontrol o�ered bymodern operating systems than they would the hard-ware supporting today's mix of operating systemsand appli
ations.1.1 The Growing Semanti
 GapThe semanti
 gap between appli
ations and operat-ing systems is growing for two major reasons. First,the diversity of appli
ations is expanding as 
heap,powerful hardware begs to be used in new, imagi-native ways. The se
ond for
e fueling this semanti
divide is the tremendous inertia the dynami
 prior-ity programming model has in modern operating sys-tems due to widespread deployment, maturity, andsimpli
ity. De
ades of s
heduling resear
h and real-time system development have been done in environ-ments implementing priority models, and this modelis taught to all students of 
omputer s
ien
e.While we do argue that a tremendous problem isarising with an in
reasingly large semanti
 gap, wein no way argue against the importan
e of priority-based programming models. On the 
ontrary, pri-ority programming models are by far the dominantmodels, and in an important sense a vi
tim of thetheir own su

ess. Many appli
ations exhibit pri-ority semanti
s dire
tly, and many other appli
ationsemanti
s are easily mapped onto the priority model.Con
urren
y 
ontrol me
hanisms developed assum-ing priority-based s
heduling are 
onvenient and eas-ier to develop. Finally, and perhaps most impor-tantly, developers of new appli
ations with new se-manti
s often have no alternative to mapping theirsemanti
s onto priority. This la
k of 
hoi
e may bea result of having no a

ess to OS sour
e, or theprospe
t of developing a new s
heduler may pose an

insurmountable barrier to developers be
ause of time
onstraints, or la
k of expertise. Bold developerssometimes use 
omplex middleware solutions map-ping appli
ation semanti
s onto traditional stati
-priority programming models. However, as appli-
ation semanti
s be
ome more sophisti
ated and di-verse, the required mappings be
ome more diÆ
ultand 
ostly to 
reate.1.2 Bridging the GapA 
ommon pattern has emerged due to the greatdiÆ
ulty of 
hanging the semanti
s of programmingmodels exported by an operating system. Pra
tition-ers 
ommonly assume that they will have to use oneor more of the following te
hniques: (1) adaptation oftheir appli
ations to use priority semanti
s, (2) ma-nipulation of priorities to for
e the desired semanti
sat the user-level, or (3) using 
on
urren
y 
ontrolme
hanisms for their s
heduling e�e
ts. These te
h-niques have often proved to be good enough on dedi-
ated systems where reasoning about a single seman-ti
s, or several simple semanti
s is a tra
table prob-lem. However, the explosive growth in appli
ationsemanti
s, and the 
ombination of semanti
s 
oex-isting on a single system, is making su
h approa
hesin
reasingly diÆ
ult. Even worse, resear
hers arein
reasingly interested in programming models thatmake it easier to formally model and verify appli-
ation behavior. Continuing to bridge the seman-ti
 gap by mixing and mat
hing indire
t methodswill not s
ale as the resulting 
omplexity will be toogreat. An alternative approa
h is to dire
tly imple-ment appli
ation semanti
s, allowing developers to
hoose the appropriate level at whi
h semanti
 map-pings o

ur.Methods for dire
tly implementing a wide rangeof appli
ation semanti
s, and for spe
ifying how the
on
i
ting demands of appli
ations with di�ering se-manti
s 
an be re
on
iled, would greatly simplifymu
h of the a

idental 
omplexity in
urred by te
h-niques su
h as indire
t semanti
 mappings. Whiledire
t implementations do not redu
e the inherent
omplexity of appli
ation semanti
s, a dire
t imple-mentation signi�
antly redu
es the 
omplexity addedby indire
t methods, and fa
ilitates modelability.1.3 Group S
hedulingGroup S
heduling 2(GS) is a pra
ti
al approa
h tohierar
hi
 s
heduling whi
h emphasizes dire
t repre-1The introdu
tion of the CFS s
heduling 
lass as a repla
ement for the SCHED OTHER implementation is a step in theright dire
tion, away from multiplexing many semanti
s into a priority-based s
heduler2



sentation of 
omputation stru
ture and dire
t imple-mentation of appli
ation semanti
s [6℄. For manyyears Group S
heduling has been used for a widevariety of proje
ts, proving 
apable of des
ribing abroad set of appli
ation semanti
s, and expressingsystem level poli
ies su
h as how to balan
e 
on
i
t-ing demands from di�erent appli
ations. The use ofGS redu
es appli
ation implementation 
omplexity
ompared to using indire
t methods be
ause devel-opers are free to express semanti
s in ways appropri-ate for a given appli
ation.This paper des
ribes the most re
ent extensionof Group S
heduling, whi
h has integrated s
hedul-ing with the semanti
s of the RT-Mutex 
on
urren
y
ontrol primitive. This work builds upon, and signif-i
antly generalizes, the 
on
urren
y 
ontrol approa
hused in CONFIG PREEMPT RT [4℄.Our approa
h, whi
h we 
all Proxy Exe
ution,employs a general representation of mutex blo
kingrelations, and provides hooks into whi
h 
ustomizedroutines may be plugged to make de
isions su
h asgranting mutex ownership on release, and permissionto steal 3. The goal of Proxy Exe
ution is to s
hed-ule owners of mutexes in su
h a way that desirabletasks blo
ked on mutexes are made runnable as soonas possible. A 
ommon solution, and the one used inCONFIG PREEMPT RT, is to implement the prior-ity inheritan
e proto
ol. However, unlike PI, ProxyExe
ution works independently of s
heduling seman-ti
s, and resolves poli
y 
on
i
ts that 
ross s
hedul-ing domains. While Proxy Exe
ution is a simple idea,the implementation is 
ompli
ated by a number offa
tors. These in
lude the maintenan
e of blo
kinggraphs, memory allo
ation requirements, and limita-tions on 
on
urren
y in
urred during maintenan
e ofthe graph.Proxy Exe
ution does not yet integrate all formsof 
on
urren
y 
ontrol, but we believe that the ap-proa
h we have taken to the integration of s
hedulingwith 
on
urren
y 
ontrol already provides a platformwithin whi
h a wide range of programming modelsemanti
s 
an be dire
tly implemented, in
luding alarge number of s
heduling algorithms popular in theresear
h 
ommunity that are 
urrently implementedin spe
ialized kernels, or in Linux using ad-ho
 meth-ods and evaluated with mi
ro-ben
hmarks.The availability of a 
ommon platform withinwhi
h a wide range of algorithms and 
ompeting se-manti
s 
ould be implemented would be a signi�-
ant advantage in fa
ilitating a

urate 
omparisons.Sin
e ea
h algorithm 
ould be tested using identi
al

system 
on�gurations, system performan
e measure-ments 
an be taken to a

urately re
e
t the 
hara
-teristi
s of a parti
ular algorithm or s
heduling pol-i
y. Many methods exist for 
olle
ting performan
erelated information on Linux-based systems, bothin user-spa
e and within the kernel. Commonframeworks in
lude FTra
e, LTTng, SystemTap, andKprobes. In this paper we make referen
e to one su
hframework 
alled DataStreams, developed and usedby the KUSP resear
h group.The remainder of this paper is organized as fol-lows. First we brie
y explore related work. Nextwe provide a ba
kground and motivation for the de-velopment of Proxy Exe
ution, and des
ribe its im-plementation in Linux. Finally we provide a sam-pling of programming models implemented in GroupS
heduling to illustrate its power and generality.2 Related WorkThe original Group S
heduling [5,6℄ framework wasbuilt in the 2.4 Linux kernel, and represented all 
om-putation types su
h as hard-IRQs, soft-IRQs, andtasklets, as members in the hierar
hy. However, inthis version integration of s
heduling semanti
s with
on
urren
y 
ontrol was not addressed.The work of [3℄ adapted the Group S
hedul-ing framework to fun
tion on top of CON-FIG PREEMPT RT, whi
h in turn uni�ed all 
om-putations as threads, allowing a simpli�
ation of theGroup S
heduling framework's treatment of 
ompu-tation types. This work also introdu
ed integrated
on
urren
y 
ontrol with a limited form of Proxy Ex-e
ution that required an SDF to 
onsider a threadblo
ked on a mutex. Knowledge of blo
king rela-tionships then allowed the framework to 
al
ulatethe 
orre
t task to run to resolve the 
on
i
t. Thisform of Proxy Exe
ution did not support s
hedulingalgorithm optimizations su
h as removing a blo
kedtask from its run-queue, nor did it address supportfor SMP systems.The s
heduling sta
k introdu
ed at the sametime as the Completely Fair S
heduler represents a�rst attempt at supporting multiple s
heduling do-mains in Linux. However, the stri
t pre
eden
e or-der of s
heduling domains and hard-
oded assump-tions of a priority s
heduling model in the RT-Mutexframework are not 
exible enough to support arbi-trary semanti
s.2Group S
heduling in this paper does not refer to the kernel fa
ility 
groups, on
e named Group S
heduling3stealing 3



Priority inheritan
e and priority 
eiling are 
las-si
 approa
hes to solving the problem of priority in-version [7℄. The RT-Mutex in Linux implements thepriority inheritan
e proto
ol [4℄, however neither so-lution e�e
tively supports a general s
heduling pol-i
y, and for
es developers to map all poli
ies onto pri-ority, further 
ompli
ating the situation when multi-ple poli
ies are simultaneously a
tive on a system.3 ImplementationWe des
ribe our implementation of Proxy Exe
ution,in
luding the extensions to the RT-Mutex frame-work, and the integration of these extensions withGroup S
heduling to support Proxy Exe
ution. Webegin with a brief overview of the Group S
hedul-ing framework, and provide a detailed motivation forProxy Exe
ution. Then we des
ribe Proxy Manage-ment, whi
h is our set of extensions made to the RT-Mutex primitive that support Proxy Exe
ution. Fi-nally, we provide a detailed view of Proxy Exe
utionand it's use within the Group S
heduling framework.3.1 Ba
kgroundGroup S
heduling is a hierar
hi
 s
heduling frame-work 
onsisting of the following 
omponents: (1)s
heduling de
ision fun
tions (SDFs), (2) groups of
omputations, and (3) s
heduling data. An SDF isan implementation of a spe
i�
 s
heduling seman-ti
s (e.g. stati
-priority or EDF), and 
ontrols the
omputations of a group, that is, a group representsa set of 
omputations s
heduled a

ording to thes
heduling semanti
s implemented by the 
ontrollingSDF. A 
omputation is represented as a member ofa group, and may be a thread or another group (al-lowing a hierar
hi
 stru
ture). And �nally, arbitrarys
heduling data may be asso
iated with both groups,and members of groups.S
heduling De
ision Fun
tionsThe idea of an SDF is analogous to a s
heduling 
lassin the Linux kernel. Like a s
heduling 
lass an SDFis implemented by �lling in generi
 fun
tion point-ers. In fa
t, Group S
heduling has reused many ofthe s
heduling hooks used in the implementation ofthe existing Linux s
heduling framework.An SDF itself is only an implementation of as
heduling semanti
s, and like a s
heduling 
lasswhi
h operates on a run-queue of tasks in a s
hedul-ing domain, an SDF too must operate with a set of


omputations. Group S
heduling organizes 
ompu-tations into groups, where a 
omputation may be athread, or another group. A group must also be asso-
iated with exa
tly one s
heduling de
ision fun
tion,whi
h 
ontrols the semanti
s by whi
h the groupmembers are s
heduled.GS Hierar
hy EvaluationAs dis
ussed, groups are 
omposed of 
omputations,whi
h may in
lude other groups. This allows a setof groups to be organized in a hierar
hi
 stru
ture,with a single root group. When a s
heduling de
isionis made the hierar
hy is traversed starting with theroot group. As the hierar
hy is traversed, ea
h groupevaluates its asso
iated s
heduling de
ision fun
tionover its members, returning a group, a thread, or a
ontrol message su
h as no de
ision. This organi-zation is very general, allowing multiple s
hedulingsemanti
s to be a
tive on a system simultaneously,but poses diÆ
ult problems for resolving 
on
i
tsbetween tasks as they intera
t through shared re-sour
es. In this paper we 
onsider a shared resour
eto be represented by a semaphore, and a 
on
i
t torefer to a blo
king relationship between a waiter andan owner of a semaphore.An example hierar
hy is shown in Figure 1. Theroot group is labeled SEQ, short for sequential SDF,and implements a semanti
s that 
hooses the �rstrunnable task in a queue. When this hierar
hy isevaluated ea
h member is re
ursively evaluated untila runnable thread is found. Threads are depi
ted bythe squares labeled T1 through T6. The group la-beled Linux represents a s
heduling de
ision made byLinux through the evaluation of the standard Linuxs
heduling 
lasses.
T 1 T 2 T 3 T 6T 4 T 5S E Q S E Q

S E QB P P 2P 1 L i n u x

FIGURE 1: Balan
ed Progress Hierar
hy4



Resolving Poli
y Con
i
tsGroup S
heduling allows for a 
ompletely general or-ganization of s
heduling semanti
s to exist on a sys-tem. However, 
onsider one 
ommon type of 
on
i
tthat results from su
h a 
exible 
on�guration. Sup-pose a task s
heduled under a stati
 priority poli
yblo
ks on a mutex owned by a task s
heduled un-der CPU reservation poli
y. Resolving this 
on
i
tin the general 
ase is very diÆ
ult as no general de-
ision fun
tion 
an be 
reated to 
ompare arbitrarypoli
ies. The solution that Group S
heduling pro-vides is 
alled Proxy Exe
ution. Proxy Exe
utionis a general me
hanism for resolving su
h 
on
i
ts.However, �rst let us examine how Linux resolves 
on-
i
ts between distin
t s
heduling domains.Linux implements two main s
heduling 
lasses,the real-time stati
 priority s
heduler, and the 
om-pletely fair s
heduler. These two 
lasses are orga-nized in a sta
k with a stri
t ordering of impor-tan
e. Spe
i�
ally, the real-time 
lass is always 
on-sidered �rst, followed by the CFS 
lass, and �nallythe 
lass whi
h always 
hooses the idle thread. In or-der for Linux to e�e
tively support the overall, sys-tem s
heduling poli
y implied by the stri
t orderingof s
heduling domains a me
hanism must be in pla
eto resolve the 
on
i
t that result when the exe
utionof a thread from one s
heduling domain is blo
kedby a thread from another domain, the most impor-tant 
ase in Linux being a real-time task blo
king ona mutex owned by a task s
heduled under the CFSpoli
y.The solution used in Linux is to implementthe priority inheritan
e proto
ol, thereby integrat-ing s
heduling semanti
s with 
on
urren
y 
ontrol.However, the priority inheritan
e proto
ol is only ap-pli
able to tasks s
heduling under priority semanti
s,thus the PI me
hanism alone 
annot resolve su
h apoli
y 
on
i
t. The solution used is two-fold: (1) alltasks are 
apable of being moved into the real-times
heduling 
lass (i.e. a priority �eld exists in thetask stru
t), and (2) a stri
t separation of priorityexists between threads in the real-time domain, andthose in the CFS domain. Given these properties the
lever solution is to simply observe alterations to atask's priority value and automati
ally move a taskfrom the CFS domain to the real-time domain, andvi
e versa, depending on whi
h range a priority fallsinto, either the real-time 
lass or the CFS 
lass. Thisme
hanism utilizes the e�e
ts of the PI proto
ol toa
hieve a more 
omplex system poli
y. In the general
ase this problem is very diÆ
ult to solve, and anysolution is likely to fail if it builds on top of exist-ing forms of integration that assume spe
i�
 system

poli
ies, su
h as priority.One very important aspe
t of the solution im-plemented in Linux is worth 
onsidering, notably themovement of a task from one domain to another as a
omponent of the solution to resolve poli
y 
on
i
tsbetween domains. In fa
t, Proxy Exe
ution uses asimilar method, but generalizes the implementationand addresses some short-
omings with the existingLinux me
hanism. Spe
i�
ally, the movement of atask from one domain to another implies that ea
htask be 
apable of moving, that is, have the properdata stru
tures. However, in Group S
heduling arbi-trary and dynami
ally allo
ated s
heduling parame-ters 
an be asso
iated with 
omputations, thus theoverhead of supporting a 
omputation's dire
t move-ment between any task would require modi�
ationto all member 
omputations as a result of updat-ing a single group's 
on�guration. Se
ond, GroupS
heduling pla
es no restri
tion on the number ofgroup memberships a 
omputation may have. Thatis, a thread may belong to multiple s
heduling do-mains. Obviously, the 
on
erns are similar to that ofdire
t task movement, but more importantly, the or-der of hierar
hy traversal is non-deterministi
, thusall memberships must be persistent.3.2 Integrated Con
urren
y ControlLinux integrates priority s
heduling semanti
s with
on
urren
y 
ontrol by hard-wiring an implementa-tion of the priority inheritan
e proto
ol into the RT-Mutex primitive. Through priority boosting CON-FIG PREEMPT RT implements a limited form ofproxy exe
ution, while s
heduling semanti
s are fur-ther integrated into the RT-Mutex implementationduring lo
k release and stealing operations by usingpriority spe
i�
 de
ision fun
tions. These two 
om-ponents, proxy exe
ution and semanti
 integration,form what we refer to as a 
omplete integration ofs
heduling semanti
s with 
on
urren
y 
ontrol. Ageneral 
omplete integration thus requires a generaltreatment of both 
omponents.The integration of s
heduling semanti
s with
on
urren
y 
ontrol is illustrated by the priority spe-
i�
 de
ision fun
tions used in the RT-Mutex imple-mentation. During lo
k release the highest prior-ity waiter is 
hosen to be
ome the pending owner,and the priority of a task is again 
ompared to apending owner to determine if a lo
k 
an be stolen.The former operation involves a fun
tion evaluatedover all waiters on a mutex, and the later is a 
om-parison made between two tasks. Group S
hedul-ing generalizes these de
isions using hooks in theRT-Mutex implementation that 
an be �lled in with5



Group S
heduling fun
tions that dire
tly implementspe
i�
 s
heduling semanti
s.A general treatment of proxy exe
ution requiresa general representation of the blo
king relationsthat exist between tasks intera
ting through a mu-tex. In PREEMPT RT these relations are impli
itlyrepresented through priority boosting. The natureof the priority inheritan
e proto
ol allows for a sim-ple implementation that a

umulates the maximumwaiter priority at ea
h mutex, and passes the maxi-mum priority value onto the owner. This me
hanismis attra
tive be
ause of its 
onstant memory require-ments and simple internal 
on
urren
y 
ontrol, butit masks individual blo
king relations making it diÆ-
ult or impossible to implement semanti
s with more
omplex requirements, su
h as CPU bandwidth lim-iting, whi
h requires expli
it links between a blo
kedtask and its proxy in order to 
orre
tly perform re-sour
e a

ounting.Group S
heduling uses a fa
ility 
alled ProxyManagement to 
reate and manage expli
it represen-tations of blo
king relationships. These relationshipsare then used by the Group S
heduling framework toimplement Proxy Exe
ution.3.3 Proxy ManagementProxy Management refers to the set of GroupS
heduling extensions built into the RT-Mutexframework that tra
k blo
king relations betweentasks. The di�eren
e between Proxy Managementand Proxy Exe
ution is that Proxy Managementrefers to the representation, 
onstru
tion, and main-tenan
e of task-to-task blo
king relations, whileProxy Exe
ution refers to the use of this informa-tion in Group S
heduling to resolve s
heduling poli
y
on
i
ts.There are two types of blo
king relations tra
kedby Proxy Management. The �rst is the relation thatdes
ribes a task being blo
ked, either dire
tly or in-dire
tly, on another task holding a resour
e. These
ond type of relation maintained by Proxy Man-agement is the proxy relation. This relation is alsoa blo
king relation, but represents the �rst 
on
i
tthat must be resolved in order to "unblo
k" a taskas soon as possible. While a task may be a part ofany number of blo
king relations, it is always asso-
iated with exa
tly one proxy relation. Intuitivelya proxy relation tra
ks the head of a given lo
king
hain, however in pra
ti
e determining a proxy is aniterative pro
ess that involves walking the lo
k 
hain.The implementation of Proxy Management usestwo distin
t data stru
tures, one to represent generi


blo
king relations, and a se
ond to represent proxyrelations. Additionally, 
hanges to the task stru
tand existing RT-Mutex data stru
tures were ne
es-sary.3.3.1 Blo
king Graph RepresentationCon
eptually a blo
king graph is a set of blo
king re-lations linked together to re
e
t the state of a lo
king
hain. Blo
king graphs in ProxyManagement expli
-itly represent all blo
king relations in a 
hain, bothdire
t and indire
t, by linking together data stru
-tures representing single blo
king relations. Thedata stru
ture used to represent a blo
king relation isthe Waiter Node. This stru
ture represents a blo
k-ing relation between two tasks, T1 and T2, and a lo
kL1, where T1 is the owner of L1 and T2 is blo
ked, ei-ther dire
tly or indire
tly on L1. Consider the graphin Figure 2. This �gure depi
ts two indire
t, and fourdire
t, blo
king relations represented by the nodeslabeled N2;3;4;5.A Proxy Relation refers to the blo
king relationthat exists between a blo
ked task, and the owner ofthe mutex at the head of the blo
ked task's lo
king
hain. This type of relation is represented by theProxy Waiter stru
ture. For example in Figure 2four proxy relations exist between tasks T2;3;4;5 andT1, the owner of the lo
k L1 at the head of the 
hain.The proxy relation data stru
tures in Figure 2 are la-beled W2;3;4;5. Ea
h of the dashed lines in the �gurerepresent linked lists that are used to organize theProxy Management data stru
tures, and their asso-
iation to ea
h other and to the existing 
omponentsof the RT-Mutex framework.
T 3 L 2 T 2 L 1 T 1N 3 N 3N 2 W 3W 2

T 5 L 4 T 4 N 5N 4 W 5W 4N 5 n o d e ss p r x _ w a i t e r s
s p r x _ w a i t e r _ n o d e s

sprx_waiters

FIGURE 2: Proxy Management datastru
ture representation6



3.4 Proxy Exe
utionProxy Exe
ution is the Group S
heduling me
hanismused to resolve arbitrary s
heduling 
on
i
ts thatarise when a task blo
ks on a mutex. Consider thestate of the system shown in Figure 2 in whi
h tasksT2;3;4;5 are blo
ked on task T1. A Group S
hedulingpoli
y that sele
ts one of these blo
ked tasks as themost desirable task will use Proxy Exe
ution to re-solve this 
on
i
t by instead running T1 as a proxy ofthe desired blo
ked task. Noti
e the 
orresponden
ebetween task T1 and the Proxy Relation asso
iatedwith ea
h blo
ked task. In fa
t, Group S
hedulingimplements Proxy Exe
ution using the proxy rela-tions 
reated by the Proxy Management framework.Proxy relations alone 
annot be used to imple-ment Proxy Exe
ution be
ause a proxy relation rep-resents a s
heduling poli
y agnosti
 view of a blo
k-ing relation. That is, it re
e
ts only the task-levelview of a relation. This is in 
on
i
t with the goalsof Proxy Exe
ution whi
h by de�nition resolve 
on-
i
ts between spe
i�
 s
heduling poli
ies. Addition-ally, two tasks on a system 
an be involved in at mosta single blo
king relation with ea
h other. However,Group S
heduling allows tasks to hold membershipsin multiple groups. Thus, a proxy relation at thetask-level 
orresponds to proxy relations between oneor more Group S
heduling members in possibly dis-tin
t s
heduling domains. Group S
heduling solvesthese problems through the use of avatars.An avatar is a spe
ial-purpose member s
hed-uled in-pla
e of a spe
i�
 member 
orresponding toa task blo
ked on a mutex. An avatar is 
reated forea
h membership of a task asso
iated with a ProxyRelation, and may use s
heduling parameters iden-ti
al to those of the task the avatar masqueradesas. Proxy Exe
ution is thus a
hieved by s
hedulingthe blo
king task asso
iated with the Proxy Relationthat prompted the 
reation of the avatar. Intuitivelythe use of an avatar is similar to giving a task tem-porary group membership under a set of di�erents
heduling parameters. In pra
ti
al terms an avataris automati
ally allo
ated for ea
h member be
ausea task 
an only ever be asso
iated with at most oneproxy relation. In 
ontrast, it is possible that a taskmay need to be s
heduled as a proxy, simultaneously,from all s
heduling domains.3.4.1 S
heduling HooksAvatars are brought in and out of existen
e as proxyrelations are 
reated and destroyed. When a newavatar is 
reated the appropriate SDF is noti�ed by
alling the insert-member hook, and spe
ifying the

avatar as the member being added to the group.Likewise the generi
 remove-member hook is 
alledto remove an avatar when a proxy relation is de-stroyed by the Proxy Management framework. AnSDF may examine a member to determine if it isa proxy allowing it to exe
ute any spe
ial setup ortear-down routines that are required.3.5 RT-Mutex ExtensionsThis se
tion 
overs the extensions made to the RT-Mutex framework that implement Proxy Manage-ment. In this se
tion we refer to proxy relationsthat are 
reated and destroyed. These terms 
onveyheavy-weight operations, however in many 
ir
um-stan
es the implementation is improved by re-usingdata stru
tures.3.5.1 Blo
kingBlo
king on a mutex is an operation that results inthe 
reation of at least one new proxy relation. Whena task blo
ks on a mutex a dire
t blo
king relation isalways 
reated between blo
king task and the ownerof the mutex. In addition to the dire
t blo
king re-lation, zero or more indire
t relations are 
reated ifthe blo
king task has existing waiters, and when theowner of the lo
k being blo
ked on, is also blo
kedon a mutex. In the later 
ase the lo
king 
hain is"walked" by iteratively examining blo
king relationsuntil an owner is found that is not blo
ked on a mu-tex. In both 
ases existing proxy relations are de-stroyed and new relations 
reated as lo
king 
hainsare extended.For ea
h proxy relation that is 
reated or de-stroyed the s
heduling framework is noti�ed by in-serting or removing an avatar asso
iated with thea�e
ted proxy relation.3.5.2 ReleasingThe release of a mutex must be integrated withs
heduling in the following ways: (1) the sele
tion ofa pending owner from among the set of dire
t waitersis integrated with s
heduling, and (2) proxy relationsmust be updated to re
e
t the 
hange in ownershipof the mutex. First, the sele
tion of a pending owneris implemented as a hook into the Group S
hedul-ing framework that allows the de
ision fun
tion tobe dynami
ally 
hosen. Se
ond, the Group S
hedul-ing framework must be noti�ed of 
hanges made toproxy relations.7



Releasing a mutex is a two-step pro
ess that up-dates the proxy relations for all threads waiting onthe mutex to be released. In the �rst step the proxyrelations that exist between all waiters on the mutexand the owner are destroyed, in
luding the relationinvolving the newly sele
ted pending owner. Se
-ond, all of the relations ex
ept the one involving thepending owner are re-
reated between the originalwaiter asso
iated with the relation, and the pendingowner. It is important to note that proxy relationsare 
reated for a pending owner during release, asopposed to when a
tual ownership takes pla
e. Eventhough the 
hoi
e of pending owner is integrated withs
heduling, no guarantee is made that this 
hoi
e willa
tually be s
heduled immediately. Thus, proxy re-lations must be 
reated to prevent the situation inwhi
h a pending owner is never s
heduled to fullya
quire a mutex.
StealingThe ability to steal a mutex is an optimization 
re-ated to exploit the window of time between a pendingowner being sele
ted, and it running to fully a
quirethe lo
k. The stealing operation is integrated withs
heduling in a nearly identi
al way to that of re-leasing a mutex. First, the de
ision to steal a lo
kfrom a pending owner must be integrated with GroupS
heduling. This de
ision is implemented as hookthat 
an be repla
ed by Group S
heduling. Its se-manti
s are dependent on the Group S
heduling pol-i
y and 
on�guration, and must be able to make aboolean valued 
omparison between tasks of poten-tially di�erent s
heduling domains.When a task attempting to steal a lo
k is deniedpermission to take possession of the lo
k it immedi-ately blo
ks on the mutex. If a task does steal a lo
kthen it must alter any existing the proxy relationsinvolving the pending owner. First, the stealing taskdestroys all proxy relations between waiters on thelo
k and the pending owner. Se
ond, the stealingtask re-
reates all proxy relations between waiterson the lo
k and itself.It is possible that a lo
k be stolen from an ex-isting waiter. This is a spe
ial 
ase taken 
are of bytreating the stealing task no di�erently than anotherwaiter. The result is a 
on�guration of data stru
-tures that represent the new owner being a waiter onitself. However, this in
onsisten
y is resolved beforethe a
quiring task re-enables interrupts and releasesthe spinlo
k prote
ting a

ess to the RT-Mutex.

Waiter InterruptionInterruptable mutex operations allow a task to aborta
quisition due to timeout, or the delivery of a sig-nal. However, su
h an interruption 
an 
ause a lo
k-ing 
hain to be "broken" at an arbitrary lo
ation.When an interrupted task is positioned at an edge ofblo
king graph (i.e. it has no waiters itself) only theinterrupted task's proxy relation is removed. If theinterruption o

urs within a lo
king 
hain the proxyrelation of ea
h waiter on the interrupted task mustbe updated. Spe
i�
ally, the interrupted task willbe
ome the new proxy of ea
h of its waiters, and itis no longer blo
ked on a mutex.Unlike the extensions to other RT-Mutex op-erations, this operation will 
onstrain 
on
urren
ywithin the lo
king 
hain being broken. A waiter thatis interrupted examines all of its waiters, removingany blo
king relation between a waiter and a taskup-stream the lo
king 
hain from the point at whi
hthe 
hain is being broken.4 EvaluationIn this se
tion the Group S
heduling framework isevaluated in terms of its generality, and the perfor-man
e of its implementation. It may be impossibleto deliver a formal proof of 
omplete generality fora framework su
h as Group S
heduling, thus we optfor a show
ase of s
hedulers implemented within theframework. The s
hedulers 
hosen are illustrativeof the wide variety of semanti
s supported by theframework in
luding 
lassi
al s
hedulers, as well assome exoti
 breeds. Finally we o�er a brief overviewof the performan
e 
hara
teristi
s of Group S
hedul-ing.4.1 Balan
ed Progress SDFWe have developed a balan
ed progress SDF thats
hedules its members in su
h way that the progressof ea
h member does not ex
eed that of other anyother members, within a 
ertain threshold. Weuse the term progress in a general sense, and itmay take on di�erent meanings in di�erent appli
a-tions. The spe
i�
 appli
ation we des
ribe here is thebalan
ed progress of multiple pro
essing pipelines,where progress is de�ned by the number of data unitspro
essed by a pipeline. For example this may be thebalan
ed produ
tion of video frames.8



GS Hierar
hyFigure 1 shows a typi
al Group S
heduling hierar-
hy used to implement an appli
ation with balan
edprogress semanti
s. At the root of the s
hedulinghierar
hy is the Sequential SDF that s
hedules itsmembers in the sequen
e they appear within thegroup. This is analogous to stati
-priority seman-ti
s. Its use here is to provide the 
omputations un-der 
ontrol of the balan
ed progress SDF preferen
eover all other system 
omputations, denoted gener-ally as the Linux group.Ea
h pipeline in Figure 1 is shown as a groupof 
omputations 
ontrolled under a sequential SDFgroup. Ea
h group of 
omputations representing apipeline is in turn a member of the balan
ed progressgroup. Ea
h of the balan
ed progress members, de-noted P1 and P2, represent a pipeline whose progressis to be balan
ed against other members of the bal-an
ed progress group. The s
heduling parameters as-so
iated with ea
h member in the balan
ed progressgroup is an integer value representing that pipeline'sprogress. When a pipeline 
ompletes a unit of 
om-putation it noti�es the balan
ed progress s
heduler toupdate the s
heduling state. The implementation ofthe s
heduling de
ision fun
tion that for
es progressto never be out of syn
 by more than one unit of
omputation is shown in Program 4.1.Program 4.1 Balan
ed Progress SDF1 balan
ed_progress_
hoose_next(group) {2 if (progress_is_equal(group))3 return 
hoose_member(group)4 else5 return least_progress(group)6 endif7 }4.2 Guided Exe
utionThe guided exe
ution programming model was 
re-ated for what we refer to as deterministi
 
on
ur-ren
y testing in whi
h we provide a method for guid-ing a set of pro
esses (or threads) into spe
i�
 exe
u-tion states in order to 
reate a desired interleaving.A similar te
hnique is used by the rt-tester to testexe
ution s
enarios within the RT-Mutex frameworkthat are spe
i�ed as a s
hedule of operations. Theguided exe
ution programming model is a generaliza-tion of the same 
on
ept, and 
an be applied to arbi-trary 
odes using s
hedules that 
ross the user/kernelspa
e boundary.

SDF OverviewThe Guided Exe
ution SDF s
hedules members a
-
ording to a user-spe
i�ed sequen
e of exe
ution 
on-texts, where an exe
ution 
ontext is a tuple 
onsist-ing a thread identi�er and an opaque 
ontext obje
tdes
ribing a state of exe
ution for the thread. Anexample of su
h a s
hedule that guides three threadsinto a spe
i�
 interleaving is:1 (top): (Thread-A, Context-A1)2: (Thread-B, Context-B1)3: (Thread-C, Context-C1)4: (Thread-B, Context-B2)The SDF treats the sequen
e of exe
ution 
on-texts as a sta
k where the top of the sta
k is thetarget 
ontext. The SDF exe
utes a s
hedule by
hoosing the thread asso
iated with the target 
on-text. On
e a thread has rea
hed its target 
ontextthe sta
k is popped and the next thread in the se-quen
e is s
heduled. A thread is 
hosen only whenit is asso
iated with the target exe
ution 
ontext. Inthis way a set of threads 
an be guided into arbitraryinterleaving.In the above example Thread-A is �rst 
hosento run until it rea
hes Context-A1. When the target
ontext has been rea
hed the sta
k is popped andThread-B is 
hosen to run until it rea
hes Context-B1. The s
hedule 
ontinues to exe
ute until allthreads are in the 
ontext asso
iated with their lastappearan
e in the s
hedule. For example, Thread-Bis �rst guided into Context-B1, and �nally rea
hesContext-B2 at whi
h point the s
hedule has been
ompleted.Guided Exe
ution Programming ModelTo demonstrate the use of the Guided Exe
utionSDF we have built a programming model aroundthe s
heduler that expresses an exe
ution 
ontext interms of spe
i�
 lo
ations within sour
e 
ode. Werefer to these lo
ations as way-points. A way-pointis a wrapper around the Group S
heduling API thatis used to inform the Guided Exe
ution SDF of athread's 
urrent 
ontext. Our 
urrent implemen-tation requires that 
ode be modi�ed by manuallyinserting way-points, but nothing will prevent way-points from being inserted using automated te
h-niques su
h as automati
 
ompiler insertion.9



4.3 Other Semanti
sMany other semanti
s have been 
reated using theGroup S
heduling framework, and both existings
heduling 
lasses in Linux, real-time stati
 prior-ity and CFS are portable to the Group S
hedul-ing framework. Notable s
hedulers implemented inthe Group S
heduling framework in
lude an Expli
itPlan s
heduler that is similar to the Guided Exe
u-tion s
heduler, but uses an expli
it s
hedule of exe-
ution periods pla
ed on a time-line. For example, itis trivial to implement periodi
 exe
ution of threadsimplementing a work-loop based programming pat-tern.Another s
heduler with 
omplex semanti
s im-plemented within the Group S
heduling frameworkis the PTides programming model developed at UCBerkeley as part of the Ptolemy group. This s
hed-uler implements an a
tor-based model where a
tors
ommuni
ate using timestamped events. A modelimplements a spe
i�
ation of a dis
reet event model.The s
heduler is responsible for s
heduling an a
torto re
eive an even only when an event is safe to pro-
ess. Portions of the safe to pro
ess analysis 
an bedone stati
ally, and at run-time sensors and a
tua-tors relate model time to physi
al time.5 Con
lusions and FutureWorkWe have presented Proxy Exe
ution, our extensionto the Group S
heduling that supports a general in-tegration of s
heduling semanti
s with 
on
urren
y
ontrol. While Group S
heduling itself fa
ilitatesthe 
reation of arbitrary programming models, ProxyExe
ution full integrates the s
heduling semanti
s ofsu
h models with the 
on
urren
y primitives in a sys-tem, 
reating a truly 
omplete solution.The use of Group S
heduling 
an redu
e 
osts byeasing the implementation of 
omplex appli
ation se-manti
s, and in
reases the a

ura
y and understand-ability by using dire
t rather than indire
t implemen-tations. Finally, Group S
heduling 
an be utilized asa framework for 
omparison of di�erent s
heduling

algorithms and poli
ies. Implementing new ideas ina single framework allow a fair 
omparison as tests
an be performed using identi
al system 
on�gura-tions and hardware pro�les.Further information and links to our soft-ware 
an be found at the KUSP website:http://www.itt
.ku.edu/kusp/Referen
es[1℄ Liu, C. L. and Layland, James W. S
hedulingAlgorithms for Multiprogramming in a Hard-Real-Time Environment Journal of the ACM,1973.[2℄ Leho
zky, J., Sha, L., and Ding, Y. The ratemonotoni
 s
heduling algorithm: exa
t 
hara
-terization andaverage 
ase behavior Real-TimeSystems Symposium, 1989.[3℄ Tejasvi Aswathanarayana. Integrating 
on-
urren
y 
ontrol & proxy exe
ution supportand provide a framework for deterministi
 
on-
urren
y testing under the kurt-linux groups
heduling model. Master's thesis, Universityof Kansas, September 2001.[4℄ Steven Rostedt and Darren V. Hart. Internalsof the RT Pat
h. Pro
eedings of the Linux Sym-posium, June 2007.[5℄ Tejasvi Aswathanarayana, Douglas Niehaus,Venkita Subramonian, and Christopher Gill.Design and performan
e of 
on�gurable endsys-tem s
heduling me
hanisms. Real-Time andEmbedded Te
hnology and Appli
ations Sympo-sium, IEEE, 0:32{43, 2005.[6℄ Mi
hael Frisbie, Douglas Niehaus, Venkita Sub-ramonian, and Christopher Gill. Group s
hedul-ing in systems software. Parallel and DistributedPro
essing Symposium, International, 3:120a,2004.[7℄ L. Sha, R. Rajkumar, and J. P. Leho
zky. Prior-ity inheritan
e proto
ols: An approa
h to real-time syn
hronization. IEEE Trans. Comput.,39(9):1175{1185, 1990.
10


