
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

546

Chapter 18CHAPTER 18

TTY Drivers

A tty device gets its name from the very old abbreviation of teletypewriter and was
originally associated only with the physical or virtual terminal connection to a Unix
machine. Over time, the name also came to mean any serial port style device, as ter-
minal connections could also be created over such a connection. Some examples of
physical tty devices are serial ports, USB-to-serial-port converters, and some types of
modems that need special processing to work properly (such as the traditional Win-
Modem style devices). tty virtual devices support virtual consoles that are used to log
into a computer, from either the keyboard, over a network connection, or through a
xterm session.

The Linux tty driver core lives right below the standard character driver level and
provides a range of features focused on providing an interface for terminal style
devices to use. The core is responsible for controlling both the flow of data across a
tty device and the format of the data. This allows tty drivers to focus on handling the
data to and from the hardware, instead of worrying about how to control the interac-
tion with user space in a consistent way. To control the flow of data, there are a
number of different line disciplines that can be virtually “plugged” into any tty
device. This is done by different tty line discipline drivers.

As Figure 18-1 shows, the tty core takes data from a user that is to be sent to a tty
device. It then passes it to a tty line discipline driver, which then passes it to the tty
driver. The tty driver converts the data into a format that can be sent to the hard-
ware. Data being received from the tty hardware flows back up through the tty
driver, into the tty line discipline driver, and into the tty core, where it can be
retrieved by a user. Sometimes the tty driver communicates directly to the tty core,
and the tty core sends data directly to the tty driver, but usually the tty line disci-
pline has a chance to modify the data that is sent between the two.

The tty driver never sees the tty line discipline. The driver cannot communicate
directly with the line discipline, nor does it realize it is even present. The driver’s job
is to format data that is sent to it in a manner that the hardware can understand, and
receive data from the hardware. The tty line discipline’s job is to format the data

,ch18.14012 Page 546 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

TTY Drivers | 547

received from a user, or the hardware, in a specific manner. This formatting usually
takes the form of a protocol conversion, such as PPP or Bluetooth.

There are three different types of tty drivers: console, serial port, and pty. The con-
sole and pty drivers have already been written and probably are the only ones needed
of these types of tty drivers. This leaves any new drivers using the tty core to interact
with the user and the system as serial port drivers.

To determine what kind of tty drivers are currently loaded in the kernel and what tty
devices are currently present, look at the /proc/tty/drivers file. This file consists of a
list of the different tty drivers currently present, showing the name of the driver, the
default node name, the major number for the driver, the range of minors used by the
driver, and the type of the tty driver. The following is an example of this file:

/dev/tty /dev/tty 5 0 system:/dev/tty
/dev/console /dev/console 5 1 system:console
/dev/ptmx /dev/ptmx 5 2 system
/dev/vc/0 /dev/vc/0 4 0 system:vtmaster
usbserial /dev/ttyUSB 188 0-254 serial
serial /dev/ttyS 4 64-67 serial
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master
pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
unknown /dev/tty 4 1-63 console

The /proc/tty/driver/ directory contains individual files for some of the tty drivers, if
they implement that functionality. The default serial driver creates a file in this direc-
tory that shows a lot of serial-port-specific information about the hardware. Informa-
tion on how to create a file in this directory is described later.

Figure 18-1. tty core overview

tty
core

tty
line

discipline

tty
driver

kernel

user

hardware

,ch18.14012 Page 547 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 18: TTY Drivers

All of the tty devices currently registered and present in the kernel have their own
subdirectory under /sys/class/tty. Within that subdirectory, there is a “dev” file that
contains the major and minor number assigned to that tty device. If the driver tells
the kernel the locations of the physical device and driver associated with the tty
device, it creates symlinks back to them. An example of this tree is:

/sys/class/tty/
|-- console
| `-- dev
|-- ptmx
| `-- dev
|-- tty
| `-- dev
|-- tty0
| `-- dev
 ...
|-- ttyS1
| `-- dev
|-- ttyS2
| `-- dev
|-- ttyS3
| `-- dev
 ...
|-- ttyUSB0
| |-- dev
| |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB0
| `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4
|-- ttyUSB1
| |-- dev
| |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB1
| `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4
|-- ttyUSB2
| |-- dev
| |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB2
| `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4
`-- ttyUSB3
 |-- dev
 |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB3
 `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4

A Small TTY Driver
To explain how the tty core works, we create a small tty driver that can be loaded,
written to and read from, and unloaded. The main data structure of any tty driver is
the struct tty_driver. It it used to register and unregister a tty driver with the tty
core and is described in the kernel header file <linux/tty_driver.h>.

,ch18.14012 Page 548 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Small TTY Driver | 549

To create a struct tty_driver, the function alloc_tty_driver must be called with the
number of tty devices this driver supports as the paramater. This can be done with
the following brief code:

/* allocate the tty driver */
tiny_tty_driver = alloc_tty_driver(TINY_TTY_MINORS);
if (!tiny_tty_driver)
 return -ENOMEM;

After the alloc_tty_driver function is successfully called, the struct tty_driver
should be initialized with the proper information based on the needs of the tty
driver. This structure contains a lot of different fields, but not all of them have to be
initialized in order to have a working tty driver. Here is an example that shows how
to initialize the structure and sets up enough of the fields to create a working tty
driver. It uses the tty_set_operations function to help copy over the set of function
operations that is defined in the driver:

static struct tty_operations serial_ops = {
 .open = tiny_open,
 .close = tiny_close,
 .write = tiny_write,
 .write_room = tiny_write_room,
 .set_termios = tiny_set_termios,
};

...

 /* initialize the tty driver */
 tiny_tty_driver->owner = THIS_MODULE;
 tiny_tty_driver->driver_name = "tiny_tty";
 tiny_tty_driver->name = "ttty";
 tiny_tty_driver->devfs_name = "tts/ttty%d";
 tiny_tty_driver->major = TINY_TTY_MAJOR,
 tiny_tty_driver->type = TTY_DRIVER_TYPE_SERIAL,
 tiny_tty_driver->subtype = SERIAL_TYPE_NORMAL,
 tiny_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS,
 tiny_tty_driver->init_termios = tty_std_termios;
 tiny_tty_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
 tty_set_operations(tiny_tty_driver, &serial_ops);

The variables and functions listed above, and how this structure is used, are
explained in the rest of the chapter.

To register this driver with the tty core, the struct tty_driver must be passed to the
tty_register_driver function:

/* register the tty driver */
retval = tty_register_driver(tiny_tty_driver);
if (retval) {
 printk(KERN_ERR "failed to register tiny tty driver");
 put_tty_driver(tiny_tty_driver);
 return retval;
}

,ch18.14012 Page 549 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 18: TTY Drivers

When tty_register_driver is called, the kernel creates all of the different sysfs tty files
for the whole range of minor devices that this tty driver can have. If you use devfs
(not covered in this book) and unless the TTY_DRIVER_NO_DEVFS flag is specified, devfs
files are created, too. The flag may be specified if you want to call tty_register_device
only for the devices that actually exist on the system, so the user always has an up-to-
date view of the devices present in the kernel, which is what devfs users expect.

After registering itself, the driver registers the devices it controls through the tty_
register_device function. This function has three arguments:

• A pointer to the struct tty_driver that the device belongs to.

• The minor number of the device.

• A pointer to the struct device that this tty device is bound to. If the tty device is
not bound to any struct device, this argument can be set to NULL.

Our driver registers all of the tty devices at once, as they are virtual and not bound to
any physical devices:

for (i = 0; i < TINY_TTY_MINORS; ++i)
 tty_register_device(tiny_tty_driver, i, NULL);

To unregister the driver with the tty core, all tty devices that were registered by call-
ing tty_register_device need to be cleaned up with a call to tty_unregister_device.
Then the struct tty_driver must be unregistered with a call to tty_unregister_driver:

for (i = 0; i < TINY_TTY_MINORS; ++i)
 tty_unregister_device(tiny_tty_driver, i);
tty_unregister_driver(tiny_tty_driver);

struct termios
The init_termios variable in the struct tty_driver is a struct termios. This variable
is used to provide a sane set of line settings if the port is used before it is initialized by
a user. The driver initializes the variable with a standard set of values, which is copied
from the tty_std_termios variable. tty_std_termios is defined in the tty core as:

struct termios tty_std_termios = {
 .c_iflag = ICRNL | IXON,
 .c_oflag = OPOST | ONLCR,
 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 ECHOCTL | ECHOKE | IEXTEN,
 .c_cc = INIT_C_CC
};

The struct termios structure is used to hold all of the current line settings for a spe-
cific port on the tty device. These line settings control the current baud rate, data

,ch18.14012 Page 550 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Small TTY Driver | 551

size, data flow settings, and many other values. The different fields of this structure
are:

tcflag_t c_iflag;
The input mode flags

tcflag_t c_oflag;
The output mode flags

tcflag_t c_cflag;
The control mode flags

tcflag_t c_lflag;
The local mode flags

cc_t c_line;
The line discipline type

cc_t c_cc[NCCS];
An array of control characters

All of the mode flags are defined as a large bitfield. The different values of the modes,
and what they are used for, can be seen in the termios manpages available in any
Linux distribution. The kernel provides a set of useful macros to get at the different
bits. These macros are defined in the header file include/linux/tty.h.

All the fields that were defined in the tiny_tty_driver variable are necessary to have
a working tty driver. The owner field is necessary in order to prevent the tty driver
from being unloaded while the tty port is open. In previous kernel versions, it was up
to the tty driver itself to handle the module reference counting logic. But kernel pro-
grammers determined that it would to be difficult to solve all of the different possi-
ble race conditions, and so the tty core now handles all of this control for the tty
drivers.

The driver_name and name fields look very similar, yet are used for different purposes.
The driver_name variable should be set to something short, descriptive, and unique
among all tty drivers in the kernel. This is because it shows up in the /proc/tty/
drivers file to describe the driver to the user and in the sysfs tty class directory of tty
drivers currently loaded. The name field is used to define a name for the individual tty
nodes assigned to this tty driver in the /dev tree. This string is used to create a tty
device by appending the number of the tty device being used at the end of the string.
It is also used to create the device name in the sysfs /sys/class/tty/ directory. If devfs is
enabled in the kernel, this name should include any subdirectory that the tty driver
wants to be placed into. As an example, the serial driver in the kernel sets the name
field to tts/ if devfs is enabled and ttyS if it is not. This string is also displayed in the
/proc/tty/drivers file.

,ch18.14012 Page 551 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 18: TTY Drivers

As we mentioned, the /proc/tty/drivers file shows all of the currently registered tty
drivers. With the tiny_tty driver registered in the kernel and no devfs, this file looks
something like the following:

$ cat /proc/tty/drivers
tiny_tty /dev/ttty 240 0-3 serial
usbserial /dev/ttyUSB 188 0-254 serial
serial /dev/ttyS 4 64-107 serial
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master
pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
unknown /dev/vc/ 4 1-63 console
/dev/vc/0 /dev/vc/0 4 0 system:vtmaster
/dev/ptmx /dev/ptmx 5 2 system
/dev/console /dev/console 5 1 system:console
/dev/tty /dev/tty 5 0 system:/dev/tty

Also, the sysfs directory /sys/class/tty looks something like the following when the
tiny_tty driver is registered with the tty core:

$ tree /sys/class/tty/ttty*
/sys/class/tty/ttty0
`-- dev
/sys/class/tty/ttty1
`-- dev
/sys/class/tty/ttty2
`-- dev
/sys/class/tty/ttty3
`-- dev

$ cat /sys/class/tty/ttty0/dev
240:0

The major variable describes what the major number for this driver is. The type and
subtype variables declare what type of tty driver this driver is. For our example, we
are a serial driver of a “normal” type. The only other subtype for a tty driver would
be a “callout” type. Callout devices were traditionally used to control the line set-
tings of a device. The data would be sent and received through one device node, and
any line setting changes would be sent to a different device node, which was the call-
out device. This required the use of two minor numbers for every single tty device.
Thankfully, almost all drivers handle both the data and line settings on the same
device node, and the callout type is rarely used for new drivers.

The flags variable is used by both the tty driver and the tty core to indicate the cur-
rent state of the driver and what kind of tty driver it is. Several bitmask macros are
defined that you must use when testing or manipulating the flags. Three bits in the
flags variable can be set by the driver:

TTY_DRIVER_RESET_TERMIOS
This flag states that the tty core resets the termios setting whenever the last pro-
cess has closed the device. This is useful for the console and pty drivers. For

,ch18.14012 Page 552 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

tty_driver Function Pointers | 553

instance, suppose the user leaves a terminal in a weird state. With this flag set,
the terminal is reset to a normal value when the user logs out or the process that
controlled the session is “killed.”

TTY_DRIVER_REAL_RAW
This flag states that the tty driver guarantees to send notifications of parity or
break characters up-to-the-line discipline. This allows the line discipline to pro-
cess received characters in a much quicker manner, as it does not have to inspect
every character received from the tty driver. Because of the speed benefits, this
value is usually set for all tty drivers.

TTY_DRIVER_NO_DEVFS
This flag states that when the call to tty_register_driver is made, the tty core does
not create any devfs entries for the tty devices. This is useful for any driver that
dynamically creates and destroys the minor devices. Examples of drivers that set
this are the USB-to-serial drivers, the USB modem driver, the USB Bluetooth tty
driver, and a number of the standard serial port drivers.

When the tty driver later wants to register a specific tty device with the tty core,
it must call tty_register_device, with a pointer to the tty driver, and the minor
number of the device that has been created. If this is not done, the tty core still
passes all calls to the tty driver, but some of the internal tty-related functionality
might not be present. This includes /sbin/hotplug notification of new tty devices
and sysfs representation of the tty device. When the registered tty device is
removed from the machine, the tty driver must call tty_unregister_device.

The one remaining bit in this variable is controlled by the tty core and is called
TTY_DRIVER_INSTALLED. This flag is set by the tty core after the driver has been regis-
tered and should never be set by a tty driver.

tty_driver Function Pointers
Finally, the tiny_tty driver declares four function pointers.

open and close
The open function is called by the tty core when a user calls open on the device node
the tty driver is assigned to. The tty core calls this with a pointer to the tty_struct
structure assigned to this device, and a file pointer. The open field must be set by a tty
driver for it to work properly; otherwise, -ENODEV is returned to the user when open is
called.

When this open function is called, the tty driver is expected to either save some data
within the tty_struct variable that is passed to it, or save the data within a static array
that can be referenced based on the minor number of the port. This is necessary so the

,ch18.14012 Page 553 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 18: TTY Drivers

tty driver knows which device is being referenced when the later close, write, and
other functions are called.

The tiny_tty driver saves a pointer within the tty structure, as can be seen with the
following code:

static int tiny_open(struct tty_struct *tty, struct file *file)
{
 struct tiny_serial *tiny;
 struct timer_list *timer;
 int index;

 /* initialize the pointer in case something fails */
 tty->driver_data = NULL;

 /* get the serial object associated with this tty pointer */
 index = tty->index;
 tiny = tiny_table[index];
 if (tiny = = NULL) {
 /* first time accessing this device, let's create it */
 tiny = kmalloc(sizeof(*tiny), GFP_KERNEL);
 if (!tiny)
 return -ENOMEM;

 init_MUTEX(&tiny->sem);
 tiny->open_count = 0;
 tiny->timer = NULL;

 tiny_table[index] = tiny;
 }

 down(&tiny->sem);

 /* save our structure within the tty structure */
 tty->driver_data = tiny;
 tiny->tty = tty;

In this code, the tiny_serial structure is saved within the tty structure. This allows
the tiny_write, tiny_write_room, and tiny_close functions to retrieve the tiny_serial
structure and manipulate it properly.

The tiny_serial structure is defined as:

struct tiny_serial {
 struct tty_struct *tty; /* pointer to the tty for this device */
 int open_count; /* number of times this port has been opened */
 struct semaphore sem; /* locks this structure */
 struct timer_list *timer;

};

As we’ve seen, the open_count variable is initialized to 0 in the open call the first time
the port is opened. This is a typical reference counter, needed because the open and
close functions of a tty driver can be called multiple times for the same device in

,ch18.14012 Page 554 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

tty_driver Function Pointers | 555

order to allow multiple processes to read and write data. To handle everything cor-
rectly, a count of how many times the port has been opened or closed must be kept;
the driver increments and decrements the count as the port is used. When the port is
opened for the first time, any needed hardware initialization and memory allocation
can be done. When the port is closed for the last time, any needed hardware shut-
down and memory cleanup can be done.

The rest of the tiny_open function shows how to keep track of the number of times
the device has been opened:

 ++tiny->open_count;
 if (tiny->open_count = = 1) {
 /* this is the first time this port is opened */
 /* do any hardware initialization needed here */

The open function must return either a negative error number if something has hap-
pened to prevent the open from being successful, or a 0 to indicate success.

The close function pointer is called by the tty core when close is called by a user on
the file handle that was previously created with a call to open. This indicates that the
device should be closed at this time. However, since the open function can be called
more than once, the close function also can be called more than once. So this func-
tion should keep track of how many times it has been called to determine if the hard-
ware should really be shut down at this time. The tiny_tty driver does this with the
following code:

static void do_close(struct tiny_serial *tiny)
{
 down(&tiny->sem);

 if (!tiny->open_count) {
 /* port was never opened */
 goto exit;
 }

 --tiny->open_count;
 if (tiny->open_count <= 0) {
 /* The port is being closed by the last user. */
 /* Do any hardware specific stuff here */

 /* shut down our timer */
 del_timer(tiny->timer);
 }
exit:
 up(&tiny->sem);
}

static void tiny_close(struct tty_struct *tty, struct file *file)
{
 struct tiny_serial *tiny = tty->driver_data;

,ch18.14012 Page 555 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 18: TTY Drivers

 if (tiny)
 do_close(tiny);
}

The tiny_close function just calls the do_close function to do the real work of closing
the device. This is done so that the shutdown logic does not have to be duplicated
here and when the driver is unloaded and a port is open. The close function has no
return value, as it is not supposed to be able to fail.

Flow of Data
The write function call is called by the user when there is data to be sent to the hard-
ware. First the tty core receives the call, and then it passes the data on to the tty
driver’s write function. The tty core also tells the tty driver the size of the data being
sent.

Sometimes, because of the speed and buffer capacity of the tty hardware, not all
characters requested by the writing program can be sent at the moment the write
function is called. The write function should return the number of characters that
was able to be sent to the hardware (or queued to be sent at a later time), so that the
user program can check if all of the data really was written. It is much easier for this
check to be done in user space than it is for a kernel driver to sit and sleep until all of
the requested data is able to be sent out. If any errors happen during the write call, a
negative error value should be returned instead of the number of characters that were
written.

The write function can be called from both interrupt context and user context. This
is important to know, as the tty driver should not call any functions that might sleep
when it is in interrupt context. These include any function that might possibly call
schedule, such as the common functions copy_from_user, kmalloc, and printk. If you
really want to sleep, make sure to check first whether the driver is in interrupt con-
text by calling in_interrupt.

This sample tiny tty driver does not connect to any real hardware, so its write func-
tion simply records in the kernel debug log what data was supposed to be written. It
does this with the following code:

static int tiny_write(struct tty_struct *tty,
 const unsigned char *buffer, int count)
{
 struct tiny_serial *tiny = tty->driver_data;
 int i;
 int retval = -EINVAL;

 if (!tiny)
 return -ENODEV;

 down(&tiny->sem);

,ch18.14012 Page 556 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

tty_driver Function Pointers | 557

 if (!tiny->open_count)
 /* port was not opened */
 goto exit;

 /* fake sending the data out a hardware port by
 * writing it to the kernel debug log.
 */
 printk(KERN_DEBUG "%s - ", __FUNCTION__);
 for (i = 0; i < count; ++i)
 printk("%02x ", buffer[i]);
 printk("\n");

exit:
 up(&tiny->sem);
 return retval;
}

The write function can be called when the tty subsystem itself needs to send some
data out the tty device. This can happen if the tty driver does not implement the
put_char function in the tty_struct. In that case, the tty core uses the write function
callback with a data size of 1. This commonly happens when the tty core wants to
convert a newline character to a line feed plus a newline character. The biggest prob-
lem that can occur here is that the tty driver’s write function must not return 0 for
this kind of call. This means that the driver must write that byte of data to the device,
as the caller (the tty core) does not buffer the data and try again at a later time. As
the write function can not determine if it is being called in the place of put_char, even
if only one byte of data is being sent, try to implement the write function so it always
writes at least one byte before returning. A number of the current USB-to-serial tty
drivers do not follow this rule, and because of this, some terminals types do not work
properly when connected to them.

The write_room function is called when the tty core wants to know how much room
in the write buffer the tty driver has available. This number changes over time as
characters empty out of the write buffers and as the write function is called, adding
characters to the buffer.

static int tiny_write_room(struct tty_struct *tty)
{
 struct tiny_serial *tiny = tty->driver_data;
 int room = -EINVAL;

 if (!tiny)
 return -ENODEV;

 down(&tiny->sem);

 if (!tiny->open_count) {
 /* port was not opened */
 goto exit;
 }

,ch18.14012 Page 557 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 18: TTY Drivers

 /* calculate how much room is left in the device */
 room = 255;

exit:
 up(&tiny->sem);
 return room;
}

Other Buffering Functions
The chars_in_buffer function in the tty_driver structure is not required in order to
have a working tty driver, but it is recommended. This function is called when the tty
core wants to know how many characters are still remaining in the tty driver’s write
buffer to be sent out. If the driver can store characters before it sends them out to the
hardware, it should implement this function in order for the tty core to be able to
determine if all of the data in the driver has drained out.

Three functions callbacks in the tty_driver structure can be used to flush any
remaining data that the driver is holding on to. These are not required to be imple-
mented, but are recommended if the tty driver can buffer data before it sends it to the
hardware. The first two function callbacks are called flush_chars and wait_until_sent.
These functions are called when the tty core has sent a number of characters to the
tty driver using the put_char function callback. The flush_chars function callback is
called when the tty core wants the tty driver to start sending these characters out to
the hardware, if it hasn’t already started. This function is allowed to return before all
of the data is sent out to the hardware. The wait_until_sent function callback works
much the same way; but it must wait until all of the characters are sent before return-
ing to the tty core or until the passed in timeout value has expired, whichever occur-
rence happens first. The tty driver is allowed to sleep within this function in order to
complete it. If the timeout value passed to the wait_until_sent function callback is set
to 0, the function should wait until it is finished with the operation.

The remaining data flushing function callback is flush_buffer. It is called by the tty
core when the tty driver is to flush all of the data still in its write buffers out of mem-
ory. Any data remaining in the buffer is lost and not sent to the device.

No read Function?
With only these functions, the tiny_tty driver can be registered, a device node
opened, data written to the device, the device node closed, and the driver unregis-
tered and unloaded from the kernel. But the tty core and tty_driver structure do not
provide a read function; in other words; no function callback exists to get data from
the driver to the tty core.

Instead of a conventional read function, the tty driver is responsible for sending any data
received from the hardware to the tty core when it is received. The tty core buffers the

,ch18.14012 Page 558 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

tty_driver Function Pointers | 559

data until it is asked for by the user. Because of the buffering logic the tty core provides,
it is not necessary for every tty driver to implement its own buffering logic. The tty core
notifies the tty driver when a user wants the driver to stop and start sending data, but if
the internal tty buffers are full, no such notification occurs.

The tty core buffers the data received by the tty drivers in a structure called struct
tty_flip_buffer. A flip buffer is a structure that contains two main data arrays. Data
being received from the tty device is stored in the first array. When that array is full,
any user waiting on the data is notified that data is available to be read. While the
user is reading the data from this array, any new incoming data is being stored in the
second array. When that array is finished, the data is again flushed to the user, and
the driver starts to fill up the first array. Essentially, the data being received “flips”
from one buffer to the other, hopefully not overflowing both of them. To try to pre-
vent data from being lost, a tty driver can monitor how big the incoming array is,
and, if it fills up, tell the tty driver to flush the buffer at this moment in time, instead
of waiting for the next available chance.

The details of the struct tty_flip_buffer structure do not really matter to the tty
driver, with one exception, the variable count. This variable contains how many
bytes are currently left in the buffer that are being used for receiving data. If this
value is equal to the value TTY_FLIPBUF_SIZE, the flip buffer needs to be flushed out to
the user with a call to tty_flip_buffer_push. This is shown in the following bit of
code:

for (i = 0; i < data_size; ++i) {
 if (tty->flip.count >= TTY_FLIPBUF_SIZE)
 tty_flip_buffer_push(tty);
 tty_insert_flip_char(tty, data[i], TTY_NORMAL);
}
tty_flip_buffer_push(tty);

Characters that are received from the tty driver to be sent to the user are added to the
flip buffer with a call to tty_insert_flip_char. The first parameter of this function is
the struct tty_struct the data should be saved in, the second parameter is the char-
acter to be saved, and the third parameter is any flags that should be set for this char-
acter. The flags value should be set to TTY_NORMAL if this is a normal character being
received. If this is a special type of character indicating an error receiving data, it
should be set to TTY_BREAK, TTY_FRAME, TTY_PARITY, or TTY_OVERRUN, depending on the
error.

In order to “push” the data to the user, a call to tty_flip_buffer_push is made. This
function should also be called if the flip buffer is about to overflow, as is shown in
this example. So whenever data is added to the flip buffer, or when the flip buffer is
full, the tty driver must call tty_flip_buffer_push. If the tty driver can accept data at
very high rates, the tty->low_latency flag should be set, which causes the call to
tty_flip_buffer_push to be immediately executed when called. Otherwise, the

,ch18.14012 Page 559 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 18: TTY Drivers

tty_flip_buffer_push call schedules itself to push the data out of the buffer at some
later point in the near future.

TTY Line Settings
When a user wants to change the line settings of a tty device or retrieve the current
line settings, he makes one of the many different termios user-space library function
calls or directly makes an ioctl call on the tty device node. The tty core converts both
of these interfaces into a number of different tty driver function callbacks and ioctl
calls.

set_termios
The majority of the termios user-space functions are translated by the library into an
ioctl call to the driver node. A large number of the different tty ioctl calls are then
translated by the tty core into a single set_termios function call to the tty driver. The
set_termios callback needs to determine which line settings it is being asked to
change, and then make those changes in the tty device. The tty driver must be able to
decode all of the different settings in the termios structure and react to any needed
changes. This is a complicated task, as all of the line settings are packed into the ter-
mios structure in a wide variety of ways.

The first thing that a set_termios function should do is determine whether anything
actually has to be changed. This can be done with the following code:

unsigned int cflag;

cflag = tty->termios->c_cflag;

/* check that they really want us to change something */
if (old_termios) {
 if ((cflag = = old_termios->c_cflag) &&
 (RELEVANT_IFLAG(tty->termios->c_iflag) = =
 RELEVANT_IFLAG(old_termios->c_iflag))) {
 printk(KERN_DEBUG " - nothing to change...\n");
 return;
 }
}

The RELEVANT_IFLAG macro is defined as:

#define RELEVANT_IFLAG(iflag) ((iflag) & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))

and is used to mask off the important bits of the cflags variable. This is then com-
pared to the old value, and see if they differ. If not, nothing needs to be changed, so
we return. Note that the old_termios variable is first checked to see if it points to a
valid structure first, before it is accessed. This is required, as sometimes this variable
is set to NULL. Trying to access a field off of a NULL pointer causes the kernel to panic.

,ch18.14012 Page 560 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

TTY Line Settings | 561

To look at the requested byte size, the CSIZE bitmask can be used to separate out the
proper bits from the cflag variable. If the size can not be determined, it is customary
to default to eight data bits. This can be implemented as follows:

/* get the byte size */
switch (cflag & CSIZE) {
 case CS5:
 printk(KERN_DEBUG " - data bits = 5\n");
 break;
 case CS6:
 printk(KERN_DEBUG " - data bits = 6\n");
 break;
 case CS7:
 printk(KERN_DEBUG " - data bits = 7\n");
 break;
 default:
 case CS8:
 printk(KERN_DEBUG " - data bits = 8\n");
 break;
}

To determine the requested parity value, the PARENB bitmask can be checked against
the cflag variable to tell if any parity is to be set at all. If so, the PARODD bitmask can be
used to determine if the parity should be odd or even. An implementation of this is:

/* determine the parity */
if (cflag & PARENB)
 if (cflag & PARODD)
 printk(KERN_DEBUG " - parity = odd\n");
 else
 printk(KERN_DEBUG " - parity = even\n");
else
 printk(KERN_DEBUG " - parity = none\n");

The stop bits that are requested can also be determined from the cflag variable using
the CSTOPB bitmask. An implemention of this is:

/* figure out the stop bits requested */
if (cflag & CSTOPB)
 printk(KERN_DEBUG " - stop bits = 2\n");
else
 printk(KERN_DEBUG " - stop bits = 1\n");

There are a two basic types of flow control: hardware and software. To determine if
the user is asking for hardware flow control, the CRTSCTS bitmask can be checked
against the cflag variable. An exmple of this is:

/* figure out the hardware flow control settings */
if (cflag & CRTSCTS)
 printk(KERN_DEBUG " - RTS/CTS is enabled\n");
else
 printk(KERN_DEBUG " - RTS/CTS is disabled\n");

,ch18.14012 Page 561 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 18: TTY Drivers

Determining the different modes of software flow control and the different stop and
start characters is a bit more involved:

/* determine software flow control */
/* if we are implementing XON/XOFF, set the start and
 * stop character in the device */
if (I_IXOFF(tty) || I_IXON(tty)) {
 unsigned char stop_char = STOP_CHAR(tty);
 unsigned char start_char = START_CHAR(tty);

 /* if we are implementing INBOUND XON/XOFF */
 if (I_IXOFF(tty))
 printk(KERN_DEBUG " - INBOUND XON/XOFF is enabled, "
 "XON = %2x, XOFF = %2x", start_char, stop_char);
 else
 printk(KERN_DEBUG" - INBOUND XON/XOFF is disabled");

 /* if we are implementing OUTBOUND XON/XOFF */
 if (I_IXON(tty))
 printk(KERN_DEBUG" - OUTBOUND XON/XOFF is enabled, "
 "XON = %2x, XOFF = %2x", start_char, stop_char);
 else
 printk(KERN_DEBUG" - OUTBOUND XON/XOFF is disabled");
}

Finally, the baud rate needs to be determined. The tty core provides a function,
tty_get_baud_rate, to help do this. The function returns an integer indicating the
requested baud rate for the specific tty device:

/* get the baud rate wanted */
printk(KERN_DEBUG " - baud rate = %d", tty_get_baud_rate(tty));

Now that the tty driver has determined all of the different line settings, it can set the
hardware up properly based on these values.

tiocmget and tiocmset
In the 2.4 and older kernels, there used to be a number of tty ioctl calls to get and set
the different control line settings. These were denoted by the constants TIOCMGET,
TIOCMBIS, TIOCMBIC, and TIOCMSET. TIOCMGET was used to get the line setting values of
the kernel, and as of the 2.6 kernel, this ioctl call has been turned into a tty driver
callback function called tiocmget. The other three ioctls have been simplified and are
now represented with a single tty driver callback function called tiocmset.

The tiocmget function in the tty driver is called by the tty core when the core wants
to know the current physical values of the control lines of a specific tty device. This is
usually done to retrieve the values of the DTR and RTS lines of a serial port. If the tty
driver cannot directly read the MSR or MCR registers of the serial port, because the
hardware does not allow this, a copy of them should be kept locally. A number of the

,ch18.14012 Page 562 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

TTY Line Settings | 563

USB-to-serial drivers must implement this kind of “shadow” variable. Here is how
this function could be implemented if a local copy of these values are kept:

static int tiny_tiocmget(struct tty_struct *tty, struct file *file)
{
 struct tiny_serial *tiny = tty->driver_data;

 unsigned int result = 0;
 unsigned int msr = tiny->msr;
 unsigned int mcr = tiny->mcr;

 result = ((mcr & MCR_DTR) ? TIOCM_DTR : 0) | /* DTR is set */
 ((mcr & MCR_RTS) ? TIOCM_RTS : 0) | /* RTS is set */
 ((mcr & MCR_LOOP) ? TIOCM_LOOP : 0) | /* LOOP is set */
 ((msr & MSR_CTS) ? TIOCM_CTS : 0) | /* CTS is set */
 ((msr & MSR_CD) ? TIOCM_CAR : 0) | /* Carrier detect is set*/
 ((msr & MSR_RI) ? TIOCM_RI : 0) | /* Ring Indicator is set */
 ((msr & MSR_DSR) ? TIOCM_DSR : 0); /* DSR is set */

 return result;
}

The tiocmset function in the tty driver is called by the tty core when the core wants to
set the values of the control lines of a specific tty device. The tty core tells the tty
driver what values to set and what to clear, by passing them in two variables: set and
clear. These variables contain a bitmask of the lines settings that should be changed.
An ioctl call never asks the driver to both set and clear a particular bit at the same
time, so it does not matter which operation occurs first. Here is an example of how
this function could be implemented by a tty driver:

static int tiny_tiocmset(struct tty_struct *tty, struct file *file,
 unsigned int set, unsigned int clear)
{
 struct tiny_serial *tiny = tty->driver_data;
 unsigned int mcr = tiny->mcr;

 if (set & TIOCM_RTS)
 mcr |= MCR_RTS;
 if (set & TIOCM_DTR)
 mcr |= MCR_RTS;

 if (clear & TIOCM_RTS)
 mcr &= ~MCR_RTS;
 if (clear & TIOCM_DTR)
 mcr &= ~MCR_RTS;

 /* set the new MCR value in the device */
 tiny->mcr = mcr;
 return 0;
}

,ch18.14012 Page 563 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 18: TTY Drivers

ioctls
The ioctl function callback in the struct tty_driver is called by the tty core when
ioctl(2) is called on the device node. If the tty driver does not know how to handle
the ioctl value passed to it, it should return -ENOIOCTLCMD to try to let the tty core
implement a generic version of the call.

The 2.6 kernel defines about 70 different tty ioctls that can be be sent to a tty driver.
Most tty drivers do not handle all of these, but only a small subset of the more com-
mon ones. Here is a list of the more popular tty ioctls, what they mean, and how to
implement them:

TIOCSERGETLSR
Gets the value of this tty device’s line status register (LSR).

TIOCGSERIAL
Gets the serial line information. A caller can potentially get a lot of serial line
information from the tty device all at once in this call. Some programs (such as
setserial and dip) call this function to make sure that the baud rate was properly
set and to get general information on what type of device the tty driver controls.
The caller passes in a pointer to a large struct of type serial_struct, which the
tty driver should fill up with the proper values. Here is an example of how this
can be implemented:

static int tiny_ioctl(struct tty_struct *tty, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 struct tiny_serial *tiny = tty->driver_data;
 if (cmd = = TIOCGSERIAL) {
 struct serial_struct tmp;
 if (!arg)
 return -EFAULT;
 memset(&tmp, 0, sizeof(tmp));
 tmp.type = tiny->serial.type;
 tmp.line = tiny->serial.line;
 tmp.port = tiny->serial.port;
 tmp.irq = tiny->serial.irq;
 tmp.flags = ASYNC_SKIP_TEST | ASYNC_AUTO_IRQ;
 tmp.xmit_fifo_size = tiny->serial.xmit_fifo_size;
 tmp.baud_base = tiny->serial.baud_base;
 tmp.close_delay = 5*HZ;
 tmp.closing_wait = 30*HZ;
 tmp.custom_divisor = tiny->serial.custom_divisor;
 tmp.hub6 = tiny->serial.hub6;
 tmp.io_type = tiny->serial.io_type;
 if (copy_to_user((void __user *)arg, &tmp, sizeof(tmp)))
 return -EFAULT;
 return 0;
 }
 return -ENOIOCTLCMD;
}

,ch18.14012 Page 564 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ioctls | 565

TIOCSSERIAL
Sets the serial line information. This is the opposite of TIOCGSERIAL and allows
the user to set the serial line status of the tty device all at once. A pointer to a
struct serial_struct is passed to this call, full of data that the tty device should
now be set to. If the tty driver does not implement this call, most programs still
works properly.

TIOCMIWAIT
Waits for MSR change. The user asks for this ioctl in the unusual circumstances
that it wants to sleep within the kernel until something happens to the MSR reg-
ister of the tty device. The arg parameter contains the type of event that the user
is waiting for. This is commonly used to wait until a status line changes, signal-
ing that more data is ready to be sent to the device.

Be careful when implementing this ioctl, and do not use the interruptible_sleep_on
call, as it is unsafe (there are lots of nasty race conditions involved with it).
Instead, a wait_queue should be used to avoid these problems. Here’s an exam-
ple of how to implement this ioctl:

static int tiny_ioctl(struct tty_struct *tty, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 struct tiny_serial *tiny = tty->driver_data;
 if (cmd = = TIOCMIWAIT) {
 DECLARE_WAITQUEUE(wait, current);
 struct async_icount cnow;
 struct async_icount cprev;
 cprev = tiny->icount;
 while (1) {
 add_wait_queue(&tiny->wait, &wait);
 set_current_state(TASK_INTERRUPTIBLE);
 schedule();
 remove_wait_queue(&tiny->wait, &wait);
 /* see if a signal woke us up */
 if (signal_pending(current))
 return -ERESTARTSYS;
 cnow = tiny->icount;
 if (cnow.rng = = cprev.rng && cnow.dsr = = cprev.dsr &&
 cnow.dcd = = cprev.dcd && cnow.cts = = cprev.cts)
 return -EIO; /* no change => error */
 if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
 ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
 ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
 ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts))) {
 return 0;
 }
 cprev = cnow;
 }
 }
 return -ENOIOCTLCMD;
}

,ch18.14012 Page 565 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 18: TTY Drivers

Somewhere in the tty driver’s code that recognizes that the MSR register
changes, the following line must be called for this code to work properly:

wake_up_interruptible(&tp->wait);

TIOCGICOUNT
Gets interrupt counts. This is called when the user wants to know how many
serial line interrupts have happened. If the driver has an interrupt handler, it
should define an internal structure of counters to keep track of these statistics
and increment the proper counter every time the function is run by the kernel.

This ioctl call passes the kernel a pointer to a structure serial_icounter_struct,
which should be filled by the tty driver. This call is often made in conjunction
with the previous TIOCMIWAIT ioctl call. If the tty driver keeps track of all of these
interrupts while the driver is operating, the code to implement this call can be
very simple:

static int tiny_ioctl(struct tty_struct *tty, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 struct tiny_serial *tiny = tty->driver_data;
 if (cmd = = TIOCGICOUNT) {
 struct async_icount cnow = tiny->icount;
 struct serial_icounter_struct icount;
 icount.cts = cnow.cts;
 icount.dsr = cnow.dsr;
 icount.rng = cnow.rng;
 icount.dcd = cnow.dcd;
 icount.rx = cnow.rx;
 icount.tx = cnow.tx;
 icount.frame = cnow.frame;
 icount.overrun = cnow.overrun;
 icount.parity = cnow.parity;
 icount.brk = cnow.brk;
 icount.buf_overrun = cnow.buf_overrun;
 if (copy_to_user((void __user *)arg, &icount, sizeof(icount)))
 return -EFAULT;
 return 0;
 }
 return -ENOIOCTLCMD;
}

proc and sysfs Handling of TTY Devices
The tty core provides a very easy way for any tty driver to maintain a file in the /proc/
tty/driver directory. If the driver defines the read_proc or write_proc functions, this
file is created. Then, any read or write call on this file is sent to the driver. The for-
mats of these functions are just like the standard /proc file-handling functions.

,ch18.14012 Page 566 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The tty_driver Structure in Detail | 567

As an example, here is a simple implementation of the read_proc tty callback that
merely prints out the number of the currently registered ports:

static int tiny_read_proc(char *page, char **start, off_t off, int count,
 int *eof, void *data)
{
 struct tiny_serial *tiny;
 off_t begin = 0;
 int length = 0;
 int i;

 length += sprintf(page, "tinyserinfo:1.0 driver:%s\n", DRIVER_VERSION);
 for (i = 0; i < TINY_TTY_MINORS && length < PAGE_SIZE; ++i) {
 tiny = tiny_table[i];
 if (tiny = = NULL)
 continue;

 length += sprintf(page+length, "%d\n", i);
 if ((length + begin) > (off + count))
 goto done;
 if ((length + begin) < off) {
 begin += length;
 length = 0;
 }
 }
 *eof = 1;
done:
 if (off >= (length + begin))
 return 0;
 *start = page + (off-begin);
 return (count < begin+length-off) ? count : begin + length-off;
}

The tty core handles all of the sysfs directory and device creation when the tty
driver is registered, or when the individual tty devices are created, depending on
the TTY_DRIVER_NO_DEVFS flag in the struct tty_driver. The individual directory
always contains the dev file, which allows user-space tools to determine the major
and minor number assigned to the device. It also contains a device and driver sym-
link, if a pointer to a valid struct device is passed in the call to tty_register_device.
Other than these three files, it is not possible for individual tty drivers to create
new sysfs files in this location. This will probably change in future kernel releases.

The tty_driver Structure in Detail
The tty_driver structure is used to register a tty driver with the tty core. Here is a list
of all of the different fields in the structure and how they are used by the tty core:

struct module *owner;
The module owner for this driver.

,ch18.14012 Page 567 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 18: TTY Drivers

int magic;
The “magic” value for this structure. Should always be set to TTY_DRIVER_MAGIC.
Is initialized in the alloc_tty_driver function.

const char *driver_name;
Name of the driver, used in /proc/tty and sysfs.

const char *name;
Node name of the driver.

int name_base;
Starting number to use when creating names for devices. This is used when the
kernel creates a string representation of a specific tty device assigned to the tty
driver.

short major;
Major number for the driver.

short minor_start;
Starting minor number for the driver. This is usually set to the same value as
name_base. Typically, this value is set to 0.

short num;
Number of minor numbers assigned to the driver. If an entire major number
range is used by the driver, this value should be set to 255. This variable is ini-
tialized in the alloc_tty_driver function.

short type;
short subtype;

Describe what kind of tty driver is being registered with the tty core. The value
of subtype depends on the type. The type field can be:

TTY_DRIVER_TYPE_SYSTEM
Used internally by the tty subsystem to remember that it is dealing with an
internal tty driver. subtype should be set to SYSTEM_TYPE_TTY, SYSTEM_TYPE_
CONSOLE, SYSTEM_TYPE_SYSCONS, or SYSTEM_TYPE_SYSPTMX. This type should not
be used by any “normal” tty driver.

TTY_DRIVER_TYPE_CONSOLE
Used only by the console driver.

TTY_DRIVER_TYPE_SERIAL
Used by any serial type driver. subtype should be set to SERIAL_TYPE_NORMAL
or SERIAL_TYPE_CALLOUT, depending on which type your driver is. This is one
of the most common settings for the type field.

TTY_DRIVER_TYPE_PTY
Used by the pseudo terminal interface (pty). subtype needs to be set to either
PTY_TYPE_MASTER or PTY_TYPE_SLAVE.

struct termios init_termios;
Initial struct termios values for the device when it is created.

,ch18.14012 Page 568 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The tty_operations Structure in Detail | 569

int flags;
Driver flags, as described earlier in this chapter.

struct proc_dir_entry *proc_entry;
This driver’s /proc entry structure. It is created by the tty core if the driver imple-
ments the write_proc or read_proc functions. This field should not be set by the
tty driver itself.

struct tty_driver *other;
Pointer to a tty slave driver. This is used only by the pty driver and should not be
used by any other tty driver.

void *driver_state;
Internal state of the tty driver. Should be used only by the pty driver.

struct tty_driver *next;
struct tty_driver *prev;

Linking variables. These variables are used by the tty core to chain all of the dif-
ferent tty drivers together, and should not be touched by any tty driver.

The tty_operations Structure in Detail
The tty_operations structure contains all of the function callbacks that can be set by
a tty driver and called by the tty core. Currently, all of the function pointers con-
tained in this structure are also in the tty_driver structure, but that will be replaced
soon with only an instance of this structure.

int (*open)(struct tty_struct * tty, struct file * filp);
The open function.

void (*close)(struct tty_struct * tty, struct file * filp);
The close function.

int (*write)(struct tty_struct * tty, const unsigned char *buf, int count);
The write function.

void (*put_char)(struct tty_struct *tty, unsigned char ch);
The single-character write function. This function is called by the tty core when
a single character is to be written to the device. If a tty driver does not define this
function, the write function is called instead when the tty core wants to send a
single character.

void (*flush_chars)(struct tty_struct *tty);
void (*wait_until_sent)(struct tty_struct *tty, int timeout);

The function that flushes data to the hardware.

int (*write_room)(struct tty_struct *tty);
The function that indicates how much of the buffer is free.

int (*chars_in_buffer)(struct tty_struct *tty);
The function that indicates how much of the buffer is full of data.

,ch18.14012 Page 569 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 18: TTY Drivers

int (*ioctl)(struct tty_struct *tty, struct file * file, unsigned int cmd,
 unsigned long arg);

The ioctl function. This function is called by the tty core when ioctl(2) is called
on the device node.

void (*set_termios)(struct tty_struct *tty, struct termios * old);
The set_termios function. This function is called by the tty core when the
device’s termios settings have been changed.

void (*throttle)(struct tty_struct * tty);
void (*unthrottle)(struct tty_struct * tty);
void (*stop)(struct tty_struct *tty);
void (*start)(struct tty_struct *tty);

Data-throttling functions. These functions are used to help control overruns of
the tty core’s input buffers. The throttle function is called when the tty core’s
input buffers are getting full. The tty driver should try to signal to the device that
no more characters should be sent to it. The unthrottle function is called when
the tty core’s input buffers have been emptied out, and it can now accept more
data. The tty driver should then signal to the device that data can be received.
The stop and start functions are much like the throttle and unthrottle functions,
but they signify that the tty driver should stop sending data to the device and
then later resume sending data.

void (*hangup)(struct tty_struct *tty);
The hangup function. This function is called when the tty driver should hang up
the tty device. Any special hardware manipulation needed to do this should
occur at this time.

void (*break_ctl)(struct tty_struct *tty, int state);
The line break control function. This function is called when the tty driver is to
turn on or off the line BREAK status on the RS-232 port. If state is set to –1, the
BREAK status should be turned on. If state is set to 0, the BREAK status should
be turned off. If this function is implemented by the tty driver, the tty core will
handle the TCSBRK, TCSBRKP, TIOCSBRK, and TIOCCBRK ioctls. Otherwise, these ioctls
are sent to the driver to the ioctl function.

void (*flush_buffer)(struct tty_struct *tty);
Flush buffer and lose any remaining data.

void (*set_ldisc)(struct tty_struct *tty);
The set line discipline function. This function is called when the tty core has
changed the line discipline of the tty driver. This function is generally not used
and should not be defined by a driver.

void (*send_xchar)(struct tty_struct *tty, char ch);
Send X-type char function. This function is used to send a high-priority XON or
XOFF character to the tty device. The character to be sent is specified in the ch
variable.

,ch18.14012 Page 570 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The tty_struct Structure in Detail | 571

int (*read_proc)(char *page, char **start, off_t off, int count, int *eof,
 void *data);
int (*write_proc)(struct file *file, const char *buffer, unsigned long count,
 void *data);

/proc read and write functions.

int (*tiocmget)(struct tty_struct *tty, struct file *file);
Gets the current line settings of the specific tty device. If retrieved successfully
from the tty device, the value should be returned to the caller.

int (*tiocmset)(struct tty_struct *tty, struct file *file, unsigned int set,
 unsigned int clear);

Sets the current line settings of the specific tty device. set and clear contain the
different line settings that should either be set or cleared.

The tty_struct Structure in Detail
The tty_struct variable is used by the tty core to keep the current state of a specific
tty port. Almost all of its fields are to be used only by the tty core, with a few excep-
tions. The fields that a tty driver can use are described here:

unsigned long flags;
The current state of the tty device. This is a bitfield variable and is accessed
through the following macros:

TTY_THROTTLED
Set when the driver has had the throttle function called. Should not be set by
a tty driver, only the tty core.

TTY_IO_ERROR
Set by the driver when it does not want any data to be read from or written
to the driver. If a user program attempts to do this, it receives an -EIO error
from the kernel. This is usually set as the device is shutting down.

TTY_OTHER_CLOSED
Used only by the pty driver to notify when the port has been closed.

TTY_EXCLUSIVE
Set by the tty core to indicate that a port is in exclusive mode and can only
be accessed by one user at a time.

TTY_DEBUG
Not used anywhere in the kernel.

TTY_DO_WRITE_WAKEUP
If this is set, the line discipline’s write_wakeup function is allowed to be
called. This is usually called at the same time the wake_up_interruptible
function is called by the tty driver.

,ch18.14012 Page 571 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 18: TTY Drivers

TTY_PUSH
Used only internally by the default tty line discipline.

TTY_CLOSING
Used by the tty core to keep track if a port is in the process of closing at that
moment in time or not.

TTY_DONT_FLIP
Used by the default tty line discipline to notify the tty core that it should not
change the flip buffer when it is set.

TTY_HW_COOK_OUT
If set by a tty driver, it notifies the line discipline that it will “cook” the out-
put sent to it. If it is not set, the line discipline copies output of the driver in
chunks; otherwise, it has to evaluate every byte sent individually for line
changes. This flag should generally not be set by a tty driver.

TTY_HW_COOK_IN
Almost identical to setting the TTY_DRIVER_REAL_RAW flag in the driver flags
variable. This flag should generally not be set by a tty driver.

TTY_PTY_LOCK
Used by the pty driver to lock and unlock a port.

TTY_NO_WRITE_SPLIT
If set, the tty core does not split up writes to the tty driver into normal-sized
chunks. This value should not be used to prevent denial-of-service attacks
on tty ports by sending large amounts of data to a port.

struct tty_flip_buffer flip;
The flip buffer for the tty device.

struct tty_ldisc ldisc;
The line discipline for the tty device.

wait_queue_head_t write_wait;
The wait_queue for the tty writing function. A tty driver should wake this up to
signal when it can receive more data.

struct termios *termios;
Pointer to the current termios settings for the tty device.

unsigned char stopped:1;
Indicates whether the tty device is stopped. The tty driver can set this value.

unsigned char hw_stopped:1;
Indicates whether or not the tty device’s hardware is stopped. The tty driver can
set this value.

unsigned char low_latency:1;
Indicates whether the tty device is a low-latency device, capable of receiving data
at a very high rate of speed. The tty driver can set this value.

,ch18.14012 Page 572 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 573

unsigned char closing:1;
Indicates whether the tty device is in the middle of closing the port. The tty
driver can set this value.

struct tty_driver driver;
The current tty_driver structure that controls this tty device.

void *driver_data;
A pointer that the tty_driver can use to store data local to the tty driver. This
variable is not modified by the tty core.

Quick Reference
This section provides a reference for the concepts introduced in this chapter. It also
explains the role of each header file that a tty driver needs to include. The lists of
fields in the tty_driver and tty_device structures, however, are not repeated here.

#include <linux/tty_driver.h>
Header file that contains the definition of struct tty_driver and declares some
of the different flags used in this structure.

#include <linux/tty.h>
Header file that contains the definition of struct tty_struct and a number of
different macros to access the individual values of the struct termios fields eas-
ily. It also contains the function declarations of the tty driver core.

#include <linux/tty_flip.h>
Header file that contains some tty flip buffer inline functions that make it easier
to manipulate the flip buffer structures.

#include <asm/termios.h>
Header file that contains the definition of struct termio for the specific hard-
ware platform the kernel is built for.

struct tty_driver *alloc_tty_driver(int lines);
Function that creates a struct tty_driver that can be later passed to the
tty_register_driver and tty_unregister_driver functions.

void put_tty_driver(struct tty_driver *driver);
Function that cleans up a struct tty_driver structure that has not been success-
fully registered with the tty core.

void tty_set_operations(struct tty_driver *driver, struct tty_operations *op);
Function that initializes the function callbacks of a struct tty_driver. This is
necessary to call before tty_register_driver can be called.

int tty_register_driver(struct tty_driver *driver);
int tty_unregister_driver(struct tty_driver *driver);

Functions that register and unregister a tty driver from the tty core.

,ch18.14012 Page 573 Friday, January 21, 2005 11:14 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 18: TTY Drivers

void tty_register_device(struct tty_driver *driver, unsigned minor, struct
 device *device);
void tty_unregister_device(struct tty_driver *driver, unsigned minor);

Functions that register and unregister a single tty device with the tty core.

void tty_insert_flip_char(struct tty_struct *tty, unsigned char ch,
 char flag);

Function that inserts characters into the tty device’s flip buffer to be read by a
user.

TTY_NORMAL
TTY_BREAK
TTY_FRAME
TTY_PARITY
TTY_OVERRUN

Different values for the flag paramater used in the tty_insert_flip_char function.

int tty_get_baud_rate(struct tty_struct *tty);
Function that gets the baud rate currently set for the specific tty device.

void tty_flip_buffer_push(struct tty_struct *tty);
Function that pushes the data in the current flip buffer to the user.

tty_std_termios
Variable that initializes a termios structure with a common set of default line
settings.

,ch18.14012 Page 574 Friday, January 21, 2005 11:14 AM

