

5: Practical suggestions 1:
process interaction

Jonathan Corbet
LWN.net

corbet@lwn.net

What this section is about

An attempt to share some experience
on how things go wrong.

Here we'll focus on process issues.

Failures

Looking at failures is instructive
So we'll do some of that

Please note:
No disrespect is intended

“A bridge, under its usual conditions of
service, behaves simply as a relatively
smooth level surface on which vehicles
can move. Only when it has been
overloaded do we learn the physical
properties of the materials from which it is
built.”
 -- Herbert Simon

“Hey, all my other
theories made sense
too. They just didn't
work. But as Edison
said: I didn't fail, I just
found three other
ways not to fix your
bug.”
 -- Linus Torvalds

How can one avoid failing?

Let your developers participate

Community-connected developers are:
Happier
More productive
More influential

Attend developer conferences

Linux-Kongress
LinuxCon
FOSDEM
linux.conf.au
FISL
Linux Plumbers Conference
...

You'll learn...

What's happening in the community

Developments of interest to you

...

Who your peers are

Develop skills in house

Chasing established developers is
expensive and difficult

It's not a zero-sum game.

Getting started

The “kernel janitors project” has a
TODO list

Ignore it

Please do not start posting white space
fixes.

Getting started

The #1 project for all kernel beginners should
surely be “make sure that the kernel runs
perfectly at all times on all machines which
you can lay your hands on.”
-- Andrew Morton

In other words:
Fix bugs

Getting started

Review code

You can learn a lot from reading and
understanding other people's code. Study the
things posted, and ask why things are done
specific ways, and point out problems that you
have noticed. It's a task that the kernel really
needs help with right now.
-- Greg Kroah-Hartman

Design your processes around
participation

“We can't release any code which has
not been through internal QA” is a
recipe for disaster.

Communicate your plans

Early!

Case study: Tux3

A next-generation filesystem by Daniel
Phillips

2008-07-23 Initial announcement
2008-11-25 Booting as root filesystem
 ...
2009-08-16 Last commit

“Do NOT fall into the trap of adding more
and more stuff to an out-of-tree project. It
just makes it harder and harder to get it
merged. There are many examples of
this.”
 -- Andrew Morton

Daniel kept adding features
...then lost interest

“Anyway, Andrew Morton was right, we
should have merged into mainline as soon
as Tux3 was booting as root.”
 -- Daniel Phillips

Lessons

Out-of-tree code is nearly invisible
Few users
Few contributors
Little momentum

Photo: Team Traveller

Lessons

Get it into the mainline early!

Seek influence, not control

Case study: em28xx

...a video4linux driver

2005-11-08 Initial driver merge
...
2008-01-05 Markus Rechberger's final

em28xx patch
2008-11-02 Replacement patch rejected
2009-08-09 Markus's final kernel patch

“Companies should be aware that if they
try to submit any code to you they will
loose the authority over _their_ work.”
 -- Markus Rechberger

Another example

May, 2004
Hans Reiser tries to block the addition of
new functionality to reiserfs.

“The fact is, maintainership does _not_
mean ownership. It means that you
should be _responsible_ for the code, and
you get credit for it, but if problems
happen you do NOT “own” it. Not at all.”
 -- Linus Torvalds

Lessons

Contributing means losing control

Others will improve your code

Photo: Yuliya Libkina

Seek influence, not control

Influence comes from
community participation
code contributions

Dan Frye's advice:
Have your developers immersed in the
community

Case study: the deadline scheduler

Con Kolivas's scheduler rewrite

2007-03-04 First post
2007-03-05 Linus amenable to merging
2007-03-19 Linus gets irritated
2007-04-13 Molnar posts CFS
2007-07-10 CFS merged for 2.6.23
2007-07-25 Con leaves the kernel

community

Understand that some things are
easy to merge

Drivers!
Obscure architecture-specific code
...

Some things are harder
Ooh you have a VM patch that helps swap on the
desktop! I can help you here with my experience from
swap prefetch:

1: Get it reviewed and have noone show any
evidence it harms
2: Find hundreds of users who can testify it helps
3: Find a way of quantifying it
4: ...
5. Merge into mainline

I haven't figured out what 4 is yet. I believe it may be
goto 1.

-- Con Kolivas

Expect delays for...

Memory management changes
Core filesystem work
Security policies
Scheduler changes
...

Improve the kernel for everybody

...or at least don't make it worse

Seek outcomes, not credit

The best solution might not be yours

Dan Frye again:
IBM rewards engineers who push a
solution forward regardless of whether
their code is merged.

Participate in the wider discussion
-ck list did not help

Mailing lists

Linux-kernel is intimidating
500 messages/day
Variable politeness

But: it's where things happen

Options:
Filter heavily
Read LWN

Subsystem lists

Many of them exist
netdev
linux-mm
linux-scsi
...

vger.kernel.org/vger-lists.html

Subsystem lists

Can be easier environments

Sometimes the only place to be
netdev

Not popular with all developers
Tend to hide conversations and problems
Can make interactions harder

When in doubt: copy linux-kernel

List etiquette

Never remove Cc's
Hey, I was reading that! Please do *not* go
making modifications to Cc: lists. Just do
reply-to-all and be happy, thanks.
-- Andrew Morton

Copy others liberally
Do not assume they will see something on
the list.

No top-posting

Good subject lines

Volume on l-k is huge and
the best strategy is to get
mail recognized as relevant
and to have reviewers'
estimate of priority before
looking into the thing more
or less close to that after.
We all have heuristics;
defeat these too often and
you will *become* one.
-- Al Viro

One other thing...

Avoid internal lists!

Have discussions in public whenever
possible.

Follow through

“Throwing it over the wall” is not
appreciated

...but it's better than nothing.

Don't break things

Case study: 2.5.x IDE

2002-02-15 Martin Dalecki's first “IDE
cleanup” patch

2002-03-08 IDE18, subsystem takeover
2002-08-09 IDE115 merged
2002-08-16 Martin quits, all IDE work

reverted

“Breakage is the price you have to pay for
advancements”
 -- Martin Dalecki

Lessons

Breaking
things is
a bad idea.

Case study: reiser4

2002-10-29 First code post
2003-07-24 2.6.0-test merge request
2004-08-19 Added to 2.6.8.1-mm2
2005-09-11 Push for 2.6.14
2006-07-20 Push for 2.6.19
2006-10-11 Hans Reiser arrested

What were the problems?

Non-POSIX filesystem behavior
Numerous technical difficulties
Hard-to-reproduce benchmarks
Antagonistic approach to others
Memories of reiser3

Linux is not a research system

Visionary brilliance will not excuse a
poor implementation

Lessons

It's better not
to accuse
others of
conspiring
against you

Photo: Rob!

Don't take it personally

They don't hate you
...or your company
...or your objectives

The community remembers past
actions

Developers also think far into the future

Photo: krupp

Market changes to developers

Case study: SystemTap

2003-11 DTrace debuts
2005-10 RHEL4 introduces SystemTap
2008-07 FTrace merged
2009-06 Perf Events merged
2009-09-22 SystemTap 1.0 released
???? SystemTap merged

2008 Kernel Summit

50% had tried to use SystemTap
20% succeeded

“I thought everyone learned the lesson behind
SystemTap's failure: when it comes to
tooling/instrumentation we don't want to
concentrate on the fancy complex setups and
abstract requirements drawn up by CIOs as
development isn't being done there.
Concentrate on our developers today, and
provide no-compromises usability to those who
contribute stuff.”
 -- Ingo Molnar

In other words...

If kernel developers don't see the value
...it won't go in.

Related case study: TALPA

Posted in August 2008
Never merged as such

The goal:
Provide hooks for virus scanners

Problems with TALPA

Kernel developers disliked it
Why bother with broken security models?

Badly-expressed requirements
No threat model
Solutions not needs

Communicate your requirements

What is the problem to be solved?
Use cases?

Requirements should be “what,” not
“how.”

Listen

Enter fanotify

Merged in August, 2010 (2.6.36)

Provides hooks for virus scanners

What changed?

Featured a cleanup of file event
notification

Replaced inotify and dnotify

Rephrased requirement:
“Enable virus scanners to hook into file
operations without using rootkit
techniques.”

Lessons

Patches must be sold to developers
Not managers or customers

Cleaning things up builds goodwill

What if things seem blocked?

Andrew Morton
...is the maintainer
of last resort.

In conclusion

The process may seem full of hazards
...but it's not that hard

Common sense and listening will see
you through

...most of the time

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

