
Investigating latency effects of the Linux real-time Preemption

Patches (PREEMPT RT) on AMD’s GEODE LX Platform

Kushal Koolwal
VersaLogic Corporation

3888 Stewart Road, Eugene, OR 97402 USA

kushalk@versalogic.com

Abstract

When it comes to embedded systems, real-time characteristics like low-latency, deterministic behavior
and guaranteed calculations are of utmost importance and there has been an increasing market demand
for real-time features on embedded computers.

This paper presents results of benchmarking a standard Linux kernel against a real-time Linux kernel
(with PREEMPT RT patch) using the Debian Linux operating system on AMD Geode LX platform
board. As the PREEMPT RT patch (RT patch) matures further and integrates into the mainline Linux
kernel, we try to characterize the latency effects (average and worst-case) of this patch on LX-based
platform.

The paper starts with a basic introduction of the RT patch and outlines the methodology and envi-
ronment used for evaluation. Following that, we present our results with appropriate graphs (bar graphs,
histograms and scatter plots) and discuss those results. We also look for any performance degradation
due to the real-time patch.

The paper concludes with some future work that can be done to further improve our results and
discusses some important issues that need to be considered when using the PREEMPT RT patch.

1 Introduction

Linux has been regarded as an excellent General
Purpose Operating System (GPOS) over the past
decade. However, recently many projects have been
started to modify the Linux kernel to transform it
into a Real-time Operating System (RTOS) as well.
One such project is PREEMPT RT patch[1] (also
known as RT patch) led by Ingo Molnar and his
team. The goal of this patch is to make the Linux
kernel more deterministic and reduce the average la-
tency of the Linux operating system.

This paper builds upon “Myths & Realities of
Real-Time Linux Software Systems” paper[2]. For
basic real-time concepts (in Linux) we strongly rec-
ommend you to first read the FAQ paper before fur-
ther reading this paper.

In this paper we are going to investigate the
latency effects of the PREEMPT RT patch on an

AMD Geode LX800 board. There have been many
real-time benchmarking studies (using RT patch)
based on Intel, IBM, and ARM platforms such as
Pentium, Xeon, Opteron, OMAP, etc. [1,15], but
no benchmarking has been done (as of this writing)
with PREEMPT RT patches on AMD’s Geode LX
platform. Moreover, the Geode platform has certain
kind of “virtual” hardware built into it and it would
be interesting to find out how does that affect the
real-time latencies. The aim of this paper is to as-
sess the RT patch using the 2.6.26 kernel series and
discuss its effects on the latency of the Linux OS.

2 Test Environment

2.1 System details

Board Name EBX-11
Board Revision 5.03
CPU (Processor) AMD Geode LX800

(500 MHz)
Memory Swiss-bit PC2700 512

MB
Storage Media WDC WD200EB-

00CPF0 (20.0 GB
Hard Drive)

BIOS Version General Software
5.3.102

Periodic SMI Disabled
USB2.0/Legacy Disabled

2.2 Operating System Details

OS Name Debian 5.0
(Lenny/testing –
i386) - Fresh Install

Linux Kernel Ver-
sion

2.6.26 (without and
with RT patch)

RT Patch Version Patch-2.6.26-rt1
Boot mode multi-user (Runlevel 2)

with “quiet” parameter
Swap space 80MB (/dev/hda5)
ACPI Off/Minimal

2.3 BIOS/System Settings to reduce
large latencies

Following are some System/BIOS settings1 that are
known to induce large latencies (in 100’s of msecs)
which we need to take care of: - One of the things
that make an OS a “good” RTOS is low latency in-
terrupt handling. SMI (System Management Inter-
rupts) interrupts are known to cause large latencies
(in several 100’s of µs). Therefore we disable the
“Periodic SMM IRQ” option2 in the BIOS[3].

- Enable minimal ACPI functionality. Just en-
able the ACPI support option in kernel and un-
check/disable all the sub-modules. Features like on-

demand CPU scaling can cause high system laten-
cies[4]. Since 2.6.18-rt6 patch we need the ACPI
support to activate “pm timer” since TSC timer is
not suitable for high-resolution timer support.

- All tests were run through an SSH connection.
It is not recommended to run the tests on a console
as the printk (kernel’s print command) can induce
very high latencies[3].

3 Test Methodology

3.1 Test Selection

Based on our research there is no one “single” test
that would test all the improvements/features of the
PREEMPT RT patch. Therefore, we selected vari-
ous kinds of test for benchmarking, in order to cover
all different metrics of real-time measurements such
as interrupt latency, scheduling latency, worst-case
latency, etc. A table comparing different tests that
we have used follows.

3.2 Test Runs

All the tests were executed with (worst-case) and
without (normal) “system load”. By system load,
we mean a program/script which generates sufficient
amount of CPU activity and IO operations (example:
reading/writing to disks) to keep the system busy
100% of the time. We wrote a simple shell script to
generate this kind of load3. Please see Appendix I
for the script code.

Normal (without load) run: Here we simply
ran the tests without any explicit program (script)
generating system load. This is equivalent of run-
ning your real-time application under normal cir-
cumstances that is an idle system with no explicit
programs running.

Worst-case4 (with load) run: Here we ran the
tests under a heavy system load. This is equivalent
of running your real-time application under system
load to determine the maximum time your applica-
tion would take to complete the desired operation in
case an unexpected event occurs.

1For more details about these issues please see: http://rt.wiki.kernel.org/index.php/HOWTO: Build an RT-
application#Latencies

2USB Legacy devices are known to cause large latencies so generally it is a good idea to disable the ‘USB legacy option’ (if
it exits) in the BIOS and to also use PS/2 mouse and keyboard instead of USB. However, disabling the ’SMM IRQ option’ in
the BIOS takes care of this issue.

3Ideally we would generate the worst-case system load that our application might encounter. Since we are benchmarking in
general, we generate an extremely high load which a real-time application is unlikely to encounter. Therefore in a real scenario
we might (or might not) get slightly better real-time performance.

4Worst-case means system running under load

Extended Worst-case (with load) run: In
addition to running each of the above mentioned
tests, under a Normal and Worst-case scenario for
approximately 1 minute, we ran the tests for 24-
hours also under a system load. Here, we do not
show results of extended tests without any system
load because the results were not significantly differ-
ent from what we observed for running the test for 1
min without any system load (Normal Scenario). To
get realistic and reliable results, especially for worst-
case latencies, we need to run tests for many hours,
preferably at least for 24 hours so that we have at
least million readings (if possible) [5,6,11]. Running
tests over short durations (for example 1 minute)
may fail to reveal all the different paths of code that
the kernel might take.

A table comparing the different real-time bench-
marks, their features, and their basic principles of
operation can be found in Appendix II.

3.3 Kernels Tested

For benchmarking purposes we tested four different
kernels:

a) 2.6.26-1-486: At the time we conducted the
tests, this was the default Debian kernel that came
with Debian Lenny (5.0)[7]. This kernel has no ma-
jor real-time characteristics.

b) 2.6.26-vl-custom-ebx11: This is a custom
configured Debian Linux kernel that is derived from
above kernel. We configure/optimize the kernel so
that it runs efficiently on EBX-11 board. This ker-
nel is partly real-time – the option “Preemptible Ker-
nel” (CONFIG PREEMPT) is selected under kernel
configuration menu.

c) 2.6.26-1-rt1-ebx11: We applied the PRE-
EMPT RT patch to the above kernel in order to
make the Linux kernel completely real-time by se-
lecting the option “Complete Preemption” (CON-
FIG PREEMPT RT).

d) 2.6.18-4-486: Since kernel 2.6.18, some parts
of the PREEMPT RT patch have been incorporated
into main-line kernel. We used this default Debian
kernel then (April 2007) to see how the latency, in
general, of a default Linux kernel has improved in
newer releases like 2.6.26. For example, theoretically

we should see better results for 2.6.26-1-486 com-
pared to 2.6.18-4-486.

4 Test Results

4.1 GTOD Test Results5

GTOD Test - 1000000 (1M) cycles

1 1 1 1 1 1

0.1 0.1

34 32
68

52075

418

52331

406 407

1.1 1.1 1.1 1.2 1.1 1.2 1.0 1.0

0.1

1

10

100

1000

10000

100000

W/O W/ W/O W/ W/O W/ W/O W/

2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486 2.6.18-4-486

Kernel

La
te

nc
y i

n
us

ec
s

Min.

Max.

Avg.

FIGURE 1: GTOD Results

For further details on the test results please refer to
Appendix III (a).

Scatter plots for GTOD Test under system
load6,7

FIGURE 2: 2.6.26-rt1 LOADED

51 second = 1000 milliseconds = 1000000 µs (secs)
W/O = Without system load
W/ = With system load
1M = 1 Million

6Wherever required, we have kept the scale of X and Y axes constant across all the graphs (histogram and scatter plot) of
each test by converting them into logarithmic scale.

7The suffix “LOADED” at the top section of each graph, as in 2.6.26-rt1-ebx11-LOADED, means system was under load.

FIGURE 3: 2.6.26-custom LOADED

FIGURE 4: 2.6.26-1-486 LOADED

FIGURE 5: 2.6.18-1-486 LOADED

GTOD TEST: As we can see from figure 1 with the
RT kernel version (2.6.26-rt1-ebx11), the maximum
(red bar) latency is significantly reduced to 32 µs
even under system load. If we were to use a default
Debian kernel (2.6.26-1-486), we would see max. la-
tencies on the order of 52331 µs (0.05 secs). Also
even though the avg. latencies (green bar) is quite
similar across all the kernels (around 1.1 µs), we see
significant differences with regards to max. latencies.
When we talk about “hard”8 real-time systems we
are more concerned with max. latency rather than
avg. latency.

Also the 2.6.18 kernel performed better than
non-RT 2.6.26 kernels. Usually we would expect the
opposite of this - a recent kernel version should per-
form better than the older version.

4.2 CYCLICTEST Results

CYCLICTEST - 50000 cycles (1 Minute)

26 19 18 21

3843 2504
4829

2192

73 75
149

3464

44 31 37 36

25026385
44600991

52908651
44705273

12511411

22301397

26453870

39921532

1

10

100

1000

10000

100000

1000000

10000000

100000000

W/O W/ W/O W/ W/O W/ W/O W/

2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486 2.6.18-4-486

Kernel

La
te

nc
y i

n
us

ec
s

Min.

Max.

Avg.

FIGURE 6: CYCLICTEST Results (1
min)

For further details on the test results please refer to
Appendix III (b).

8For information about the difference between “hard” and “soft” real-time systems, please refer to the section “Hard vs Soft
Real-time” in[2].

Histograms for CYCLICTEST (1 min) under
system load9

FIGURE 7: 2.6.26-rt1 LOADED

FIGURE 8: 2.6.26-custom LOADED

Scatter plots for CYCLICTEST (1 min) under
system load

FIGURE 9: 2.6.26-rt1 LOADED

FIGURE 10: 2.6.26-custom LOADED

CYCLICTEST - 65500000 (~65 M) cycles (24 Hour)

23

2

100

4394

43 36

1

10

100

1000

10000

2.6.26-rt1-ebx11 2.6.26-vl-custom-ebx11

Kernel

La
te

nc
y i

n
us

ec
s

Min.

Max.

Avg.

FIGURE 11: CYCLICTEST Results (24
hr)

For further details on the test results please refer to
Appendix III (c).

9The green line in histograms indicates the max. latency point

Histograms for CYCLICTEST (24 hour) under
system load

FIGURE 12: 2.6.26-rt1 LOADED

FIGURE 13: 2.6.26-custom LOADED

Scatter plot for CYCLICTEST (24 hour) under
system load

FIGURE 14: 2.6.26-rt1 LOADED

FIGURE 15: 2.6.26-custom LOADED

CYCLICTEST: From figure 6, we can clearly see
that the max. latency for RT kernel has significantly
reduced to around 75 µs from 25026385 µs (25 secs).
Also overall the avg. latency for RT kernel has also
reduced. Also from figure 11, we can see that the
max. latency for RT kernel increased to 100 µs (24
hour test) from 75 µs (1 min. test) but it is still less
than max. latency of 4394 µs of the corresponding
non-RT kernel (2.6.26-vl-custom-ebx11) under sys-
tem load. This observation is consistent with the
extended tests above - running tests for longer dura-
tion possibly makes the kernel to go to different code
(or error) paths and hence we would expect increase
in latencies.

Also from the above scatter plot (24 hour) fig-
ures 14,15 for cyclictest, we can see that red dots
are distributed all over the graph (bottom right) for
non-RT kernel (2.6.26-vl-custom-ebx11) in contrast
to RT kernel (bottom left) indicating that there are
lots of instances in which latencies have shot well
above 100 µs mark which is the max. latency of RT
kernel (2.6.26-rt1-ebx11). One can see the nature of
distribution of these latencies in the histogram plot
(24 hour) also.

Furthermore, from figure 11 we can see that avg.
latency of RT kernel (23 µs) is more than that of
non-RT kernel (2 µs). This is quite surprising but
instances like these are not uncommon[8] for people
who have performed similar tests. Morever, from a
practical approach, we care more about maximum
latencies rather than average latencies.

4.3 LPPTest Results

LPPTEST - 300000 responses (1 Minute)

8.3 8.3 8.4 8.3 8.3 8.3

41.4

104.1

52.9 51.3

4656.45623.9

10.6 10.310.913.0 11.6 10.9

1

10

100

1000

10000

W/O W/ W/O W/ W/O W/

2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486

Kernel

La
ten

cy
 in

 u
se

cs

Min.

Max.

Avg.

FIGURE 16: LPPTest Results (1 min)

For further details on the test results please refer to
Appendix III (d)10.

Histograms for LPPTEST (1 min) under system
load

FIGURE 17: 2.6.26-rt1 LOADED

FIGURE 18: 2.6.26-custom LOADED

FIGURE 19: 2.6.26-1-486 LOADED

Scatter Plot for LPPTEST (1 min) under system
load

10We were unable to test the 2.6.18-4-486 version under lpptest because of the difficulty in porting the lpptest program to
2.6.18 from 2.6.26 due to some major changes to the kernel code structure.

FIGURE 20: 2.6.26-rt1 LOADED

FIGURE 21: 2.6.26-custom LOADED

FIGURE 22: 2.6.26-1-486 LOADED

LPPTEST - 214600000 (~200 M) responses (24 Hours)

8.0 8.0
6.5

127.2

5989.8
4944.1

12.8
10.611.6

1

10

100

1000

10000

2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486

Kernel

La
ten

cy
 in

 u
se

cs

Min.

Max.

Avg.

FIGURE 23: LPPTest Results (24 hr)

For further details on the test results please refer to
Appendix III (e).

Histograms for LPPTEST (24 hour) under sys-
tem load

FIGURE 24: 2.6.26-rt1 LOADED

FIGURE 25: 2.6.26-custom LOADED

FIGURE 26: 2.6.26-1-486 LOADED

Scatter Plot for LPPTEST (24 hour) under sys-
tem load

FIGURE 27: 2.6.26-rt1 LOADED

FIGURE 28: 2.6.26-custom LOADED

FIGURE 29: 2.6.26-1-486 LOADED

LPPTEST: The results of lpptest, 1 min. and 24
hour, are consistent with results of the above two
tests - max. latencies getting significantly reduced
in the RT kernel as compared to non-RT kernels.
See figure 4 and 5. Histograms and scatter plots (24
hour) of lpptest test show many latencies above the
127.2 µs mark, the max. latency for the RT kernel.

4.4 Latency comparison of 2.6.26-rt1-
ebx11 across all the tests

Here we compare the latencies of the RT kernel
(2.6.26-rt1-ebx11) across all the tests.

2.6.26-rt1-ebx11 - All Tests - Short Duration (1 Minute)

1 1

26

19

8.27 8.33

34 32

73 75

41.36

104.06

1 1

44

31

11
13

1

10

100

1000

W/O W/ W/O W/ W/O W/

GTOD CYCLICTEST LPPTEST

Name of the Tests

La
te

nc
y i

n
us

ec
s

Min.

Max.

Avg.

FIGURE 30: Latency Results (1 min)

2.6.26-rt1-ebx11- All Tests - Extended (24 Hour) (LOADED)

23

8.03

100
127.16

43

13

1

10

100

1000

CYCLICTEST LPPTEST

Name of the Tests

La
te

nc
y i

n
us

ec
s

Min.

Max.

Avg.

FIGURE 31: Latency Results (24 hr)

From the figures 30 and 31, we can see that latencies
for each of the extended tests are more than their
corresponding short duration tests. Also the laten-
cies for LPPTEST are greater than latencies of other

tests because of the external measurement method11

involved.

Do these numbers make sense?

Now having summarized the results, what can we
conclude from these numbers? Are these the right
kind of numbers that we should have been expect-
ing? Again, this is an open-ended question and the
answer really depends upon your needs, the under-
lying application and the system[2]. However we
can use the following guideline from OSADL[9] to
give us some idea whether our numbers are in the
ball park range: “As a rule of thumb, the maximum
(worst-case) latency amounts to approximately (105
/ clock frequency of an idle system).” Upon calcu-
lating based on the above guideline for the EBX-11’s
500 MHz LX processor, the maximum allowed la-
tency comes to around 200 µs12. From figures 30
and 31, we can clearly see that during any of the
tests, the max. latency has never exceeded more than
127.2 µs. Therefore, based on the above guideline,
the results look well under control, but then again,
it really depends upon how much max. latency your
application/system can tolerate.

4.5 Impact on performance

As we know[2], real-time improvements come at the
cost of possible performance degradation13. An
RTOS may (or may not) sacrifice performance in
order to become more deterministic. Therefore we
decided to benchmark performance of 2.6.26 kernels
to see how PREEMPT RT patch affects the perfor-
mance (or throughput) in general.

Peformance Comparison (smaller is better)

3194

998

2545

24 24.2 25.5

7

4

26
18.5 17.9 17.5

1.38 1.27 1.42

15
18

31

1

10

100

1000

10000

2.6.26-rt1-ebx11 2.6.26-vl-custom-

ebx11

2.6.26-1-486

Kernels

Tim
es

 in
 m

icr
os

ec
on

ds

Local Comm:TCP Conn

Local Comm: Mem read (MB/s)

File&VM: Page Fault

File&VM: 100fd-select

CPU:Null I/O

CPU:sh proc

FIGURE 32: Performance Comparison

We arbitrarily chose few parameters to compare
from various system categories such as Communi-
cation, File and Virtual Memory and CPU from
the LMbench test suite[10], as shown in figure 32
above. From the above figure14, we can say the RT
patch does affect the system performance negatively
across most of the categories as compared to non-
RT kernels, especially with TCP Conn., where real-
time kernel (2.6.26-rt1-ebx11) takes 3194 µs (tallest
blue bar) and non real-time kernel (2.6.26-vl-custom-
ebx11) takes only 998 µs. In general, we can say that
the negative impact of RT patch is very application
dependent, although for majority of the parameters,
the RT patch does not affect the system performance
negatively by a “significant” margin. Please see Ap-
pendix IV for other system parameter results.

5 Future work and considera-
tions

Although the above results give us a good idea about
the usefulness and effectiveness of PREEMPT RT
patch, there are some additional factors to be con-
sidered:

a) BIOS/Firmware impact Real-time metrics
can depend upon how well BIOS is configured and
how well the BIOS code is written. Settings related
to USB device configuration, SMI interrupts, System
Management mode, etc. can make a huge difference
on the latencies of a given system.

b) Kernel settings The above results could
vary depending upon how the Linux kernel is config-
ured. We carefully configured all relevant real-time
kernel parameters to take maximum advantage of the
PREEMPT RT patch. However there is a possibility
that our current kernel configuration can be tweaked
to further improve the determinism and the worst-
case latencies.

c) Trace large latencies To further improve
deterministic behavior we can trace which kernel
functions/threads/programs are responsible for caus-
ing large system latencies (in 100s of µs). This can
be done by enabling some of the debugging options
in kernel[11,12]. We did not enable these debugging

11We measured the latencies of the target board (EBX-11) from a host board (another EBX-11 board) using parallel port
cable. For all other tests (gtod and cyclictest), the latencies are recorded on the board that is being benchmarked itself.

12100000/500000000=0.0002 secs = 200 µs. The calculation was done assuming 1 GHz = 1 Billion cycles per second.
13Note that real-time does not mean better performance. For details refer to[2].
14For all parameters in the figure 32, smaller value is better except for Memread (red bar). In order to avoid creating a

separate graph just for one parameter (Memread), we decided to add it with other parameters. Note that the unit of Memread
is in MB/s and hence bigger value is better for Memread. For rest of the other parameters the unit is secs.

options during our tests because doing so increases
the system overhead and causes additional latencies
to be introduced by the kernel itself, which would
skew our results.

d) Different RT approach Lastly, as men-
tioned in the beginning of the paper, the PRE-
EMPT RT is just one of the several approaches to
make Linux kernel real-time. It would be interesting
to see if we can improve our current results by using
some of the other real-time approaches like Xenomai,
RTLinux, etc.

6 Conclusion

PREEMPT RT patch significantly improves the
premptiveness of the Linux kernel. However we
should keep in mind that these results are statistical
in nature rather than being conclusive. Developers
should consider the latency requirement of their ap-
plication rather than relying on these latency num-
bers. For example, an embedded application devel-
oper who defines a worst-case latency requirement to
be 200 µs can probably use the above combination
of EBX-11 and the RT kernel (2.6.26-rt1-ebx11). In
general there is no such “magic” latency figure that
one can simply assume.

There is still some debate in the community con-
cerning the readiness of the PREEMPT RT patch for
“hard” real-time systems [14,17]. Therefore, we can-
not yet draw broad conclusions about the suitability
of the PREEMPT RT patch for mission critical and
life sustaining systems, where missing even a single
deadline can lead to catastrophic failures and loss of
life.

References

[1] http://www.kernel.org/pub/linux/kernel/projects/
rt/older/patch-2.6.26-rt1.bz2

[2] http://versalogic.com/mediacenter/whitepapers/
wp linux rt.asp

[3] http://rt.wiki.kernel.org/index.php/HOWTO:
Build an RT-application#Latencies

[4] http://rt.wiki.kernel.org/index.php/RT PREEMPT
HOWTO#Configuration and Compilation

[5] http://lkml.org/lkml/2005/6/30/9

[6] http://lkml.org/lkml/2005/6/22/337

[7] http://www.debian.org/CD/http-ftp/

[8] http://kerneltrap.org/node/5466

[9] http://www.osadl.org/Realtime-Preempt-
Kernel.kernel-rt.0.html

[10] http://www.bitmover.com/lmbench/get lmbench.html

[11] Read explanation of debugging options under
”Kernel Hacking -¿ Kernel Debugging” option
in the kernel configuration menu after applying
the 2.6.26-rt1 RT patch from [1]

[12] http://www.linuxdevices.com/news/NS8896249579.html

[13] http://www.linuxdevices.com/articles/AT8906594941.html

[14] http://dslab.lzu.edu.cn:8080/docs/publications/Siro.pdf

[15] http://www.research.ibm.com/journal/sj/472/hart.html

[16] http://www.uwsg.iu.edu/hypermail/linux/
kernel/0507.2/0468.html

[17] Building Embedded Linux Systems, 2nd Edition,
Karim Yaghmour, Jonathan Masters and Gilad
Ben-Yossef, Aug. 2008,O’Reilly Media

APPENDIX I – System Load Script Code

#!/bin/bash

defaultseconds=60

seconds=“$1”

if test -z “$seconds” ||test “$seconds” -lt 1

then

seconds=$defaultseconds

fi

cd /usr/src/linux

make clean

make -j8 &

cd;

echo “Started make -j8”

(while true; do dd if=/dev/zero of=/dev/null bs=1024000 count=1000; done) &

echo “Started DD”

ping -l 100 -q -s 10 -f localhost &

echo “Started ping flood”

(while true; do nice ./hackbench 30 >/dev/null; done) &

echo “Started hackbench...”

(while true; do du / 1>/dev/null 2>&1; done) &

echo “Started DU...”

while test $seconds -gt 0

do

echo -n -e \\rStill $seconds seconds to wait ...

sleep 1

seconds=‘expr $seconds - 1‘

done

echo

echo “Script Terminated...”

APPENDIX II – Tests Comparison

Test Name GTOD LATENCY CYCLICTEST LPPTEST
Interrupt Genera-
tion

N/A Clock
clock nanosleep

Data sent on Place-
NameplaceParallel
PlaceTypePort

Measures? Time between pairs
of consecutive calls to
determine time

Interrupt and
Scheduling Latency

End-to-End Re-
sponse Latency

CityplaceNormal
Iterations
(1 Min. approx.)

1000000 50000 300000

WC1

Iterations
(1 Min. approx.)

1000000 50000 300000

Extended
Iteration
(24 Hr. approx.)

N/A2 65500000
(65.5 M3)

214600000
(214.6 M)

Driver/
Function

Gettimeofday() N/A lpptest

IRQ N/A N/A 7
Person/
Company

IBM Thomas Gleixner
TimeSys

Ingo Molar
Red Hat

Comments gtod =
get time of day.
The test calls a func-
tion to get system’s
time of day.

Uses High Resolu-
tion timer support.
Measures expected
time vs. actual time
for wakeup.

Built inside kernel.
External measure-
ment.

1WC = Worst-case scenario
2The test fails above 10000000 iterations and hence there are no worst-case results this test.
3M = Million

APPENDIX III – Test results

a) GetTimeOfDay - gtod latency (usecs) – 1000000 Iterations

Kernels 2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486 2.6.18-4-486
Load? W/O W/ W/O W/ W/O W/ W/O W/
Min. 1 1 1 1 1 1 N/A N/A
Max. 34 32 68 52075 418 52331 406 407
Avg. 1.1268 1.1422 1.1101 1.1621 1.1311 1.1817 0.9869 0.9951
Std Dev 0.5845 0.5720 0.4786 52.0764 0.7188 52.3333 0.4590 0.4509

b) CyclicTest (Interrupt and scheduling latency) (usecs) – 50000 cycles (1 Minute)

Kernels 2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486 2.6.18-4-486
Load? W/O W/ W/O W/ W/O W/ W/O W/
Min. 26 19 18 21 3843 2504 4829 2192
Max. 73 75 149 3464 44705273 25026385 44600991 52908651
Avg. 44 31 37.47 36.33 39921532 12511411 22301397 26453870

c) CyclicTest (Interrupt and scheduling latency) (usecs) – 18000000 cycles (24 hour)

Kernels 2.6.26-rt1-ebx11 2.6.26-vl-custom
Load? Yes Yes
Min. 23 2
Max. 100 4394
Avg. 43.29363198 36.5
Samples 65512035 65543590

d) LPP Test (End to End response latency) (usecs) – 300000 responses (1 Minute)

Kernels 2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486 2.6.18-4-486
Load? W/O W/ W/O W/ W/O W/ W/O W/
Min. 8.27 8.33 8.36 8.33 8.33 8.33 N/A N/A
Max. 41.36 104.06 52.91 5623.92 51.26 4656.44 N/A N/A
Avg. 10.59 12.98 10.90 11.58 10.33 10.94 N/A N/A

e) LPP Test (End to End response latency) (usecs) – 214600000 responses (24 hours)

Kernels 2.6.26-rt1-ebx11 2.6.26-vl-custom 2.6.26-1-486
Min. 8.03 7.95 6.45
Max. 127.16 5989.77 4944.08
Avg. 12.79 11.59 10.63
Responses 214620000 214669636 214619724

APPENDIX IV

