
XtratuM: a Hypervisor for Safety Critical Embedded Systems

M. Masmano, I. Ripoll, and A. Crespo
Instituto de Informática Industrial, Universidad Politécnica de Valencia (Spain)

{mmasmano, iripoll, alfons}@ai2.upv.es

J.J. Metge
CNES (Toulouse, France)

jean-jacques.Metge@cnes.fr

Abstract

XtratuM is an hypervisor designed to meet safety critical requirements. Initially designed for x86
architectures (version 2.0), it has been strongly redesigned for SPARC v8 arquitecture and specially for
the to the LEON2 processor. Current version 2.2, includes all the functionalities required to build safety
critical systems based on ARINC 653, AUTOSTAR and other standards. Although XtratuMdoes not
provides a compliant API with these standards, partitions can offer easily the appropriated API to the
applications. XtratuM is being used by the aerospace sector to build software building blocks of future
generic on board software dedicated to payloads management units in aerospace.

XtratuM provides ARINC 653 scheduling policy, partition management, inter-partition communi-
cations, health monitoring, logbooks, traces, and other services to easily been adapted to the ARINC
standard. The configuration of the system is specified in a configuration file (XML format) and it is
compiled to achieve a static configuration of the final container (XtratuM and the partition’s code) to be
deployed to the hardware board. As far as we know, XtratuM is the first hypervisor for the SPARC v8
arquitecture.

In this paper, the main design aspects are discussed and the internal architecture described. An
evaluation of the most significant metrics is also provided. This evaluation permits to affirm that the
overhead of a hypervisor is lower than 3% if the slot duration is higher than 1 millisecond.

.

1 Introduction

Although virtualisation has been used in mainframe systems since 60’s; the advances in the processing power
of the desktop processors in the middle of the 90’s, opened the possibility to use it in the PC market. The
embedded market is now ready to take advantage of this promising technology. Most of the recent advances
on virtualization have been done in the desktop systems, and transferring these results to embedded systems
is not as direct as it may seem.

The current state of the visualizing technology is the result of a convergence of several technologies:
operating system design, compilers, interpreters, hardware support, etc. This heterogeneous origin, jointly
with the fast evolution, has caused a confusion on the terminology. The same term is used to refer to different
ideas and the same concept is differently named depending on the engineer background.

A virtual machine (VM) is a software implementation of a machine (computer) that executes programs
like a real machine. Hypervisor (also known as virtual machine monitor VMM [7]) is a layer of software
(or a combination of software/hardware) that allows to run several independent execution environments1 in
a single computer. The key difference between hypervisor technology and other kind of virtualizations (such
as java virtual machine or software emulation) is the performance. Hypervisor solutions have to introduce a
very low overhead; the throughput of the virtual machines has to be very close to that of the native hardware.

Hypervisor is a new and promising technology, but has to be adapted and customized to the requirements
of the target application. As far as we know, there are no previous experiences with hypervisors for spatial
systems.

1We will use the terms:guest, virtual machine and partition as synonyms.



When a hypervisor is designed for real-time embedded systems, the main issues that have to be considered
are:

• Temporal and spatial isolation.
• Basic resource virtualisation: clock and timers, interrupts, memory, cpu time, serial i/o.
• Real-time scheduling policy for partition scheduling.
• Efficient context switch for partitions.
• Deterministic hypervisor system calls.
• Efficient inter-partition communication.
• Low overhead.
• Low footprint.

In this paper, we present the design, implementation and evaluation of XtratuM for the LEON2 processor.
Although XtratuM was initially implemented for x86 architectures, its porting to LEON2 has implied a strong
effort in redesign and implementation due to the architecture constraints.

2 Virtualising technologies overview

Attending to the resources used by the hypervisor there are two classes of hypervisors called type 1 and type
2. The type 1 hypervisors run directly on the native hardware (also named native or bare-metal hypervisors);
the second type of hypervisors are executed on top of an operating system. The native operating system
is called host operating system and the operating systems that are executed in the virtual environment are
called guest operating systems.

Although the basic idea of virtualizing [5] is widely understood: “any way to recreate an execution en-
vironment, which is not the original (native) one”; there are substantial differences between the different
technological approaches used to achieve this goal.

Virtualizing is a very active area, several competing technologies are actively developed. There is still not
a clear solution, or a winner technology over the rest. Some virtualizing technologies are better than other
for a given target. For example, on desktop systems, para-virtualization is the best choice if the source code
of the virtualized environment is available, otherwise full-virtualization is the only possible solution.

A detailed description and analysis of the techniques and the existing solutions is beyond the scope of this
report (the reader is referred to the document “Virtualization: State of the Art” [14]). Just to summarise
the current available solutions for the real-time embedded systems:

Separation kernel: Also known as operating system-level virtualization. In this approach the operating
system is extended (or improved) to enforce a stronger isolation between processes or groups of processes.
Each group of isolated group of processes is considered a partition. In this solution, all the partitions
must use the same operating system. It is like if several instances of the same O.S. were executed in
the same hardware.

Micro-kernel: This was originally an architectonic solution for developing large and complex operating
systems. The idea was to separate the core kernel services from the rest of more complex and “baroque”
services. The core kernel services are implemented by a layer of code called micro-kernel, and consist
of: context switch, basic memory management, and simple communication services (IPC). Although
the microkernel technology was developed as a paradigm to implement a single operating system, the
services provided by the micro-kernel can be used to build several different operating systems, resulting
in a virtualized system.
The micro-kernel approach started with the March micro-kernel [8]. The most representative imple-
mentation of a micro-kernel is the L4 [10, 9].

Bare-metal hypervisor: It is a thin layer of software that virtualizes the critical hardware devices to
create several isolated partitions. The hypervisor also provides other virtual services: inter-partition
communication or partition control services.
The hypervisor does not define an abstract virtual machine but tries to reuse and adapt to the underlying
hardware as much as possible to reduce the virtualization overhead. In other words, the virtual machine
will be close to the native hardware in order to directly use the native hardware as much as possible
without jeopardizing the temporal and spatial isolation.



2.1 Para-virtualization

The para-virtualization (term coined in the Xen [6] project) technique consist in replacing the conflicting
instructions2 explicitly by functions provided by the hypervisor. In this case, the partition code has to
be aware of the limitations of the virtual environment and use the hypervisor services. Those services are
provided thought a set of hypercalls.

The hypervisor is still in charge of managing the hardware resources of the systems, and enforce the
spatial and temporal isolation of the guests. Direct access to the native hardware is not allowed.

The para-virtualization is the technique that better fits the requirements of embedded systems: Faster,
simpler, smaller and the customization (para-virtualization) of the guest operating system is not a problem
because the source code is available. Also, this technique does not requires special processor features that
may increase the cost of the product.

2.2 Dedicated devices

In the server and desktop segments, the virtualizer provides a complete (or full) virtualized environment for
each virtual machine. That is, the each virtual machine is fully isolated from the native hardware, and has
no direct access to any peripheral.

Some virtualizers allows a virtual machine to access directly some parts of the native hardware. This
concept is known as partial virtualization. This technique is widely used in embedded systems when a device
is not shared among several partitions, or when the complexity of the driver is that high that it does not
worth including it in the virtualizer layer. In some cases, when the policy for sharing a peripheral is user
specific (or when the user requires a fine grain control over the peripheral), it is better to allocate the native
peripheral to a designated manager virtual machine.

In this case, the virtualizer is not aware of the exact operation of the peripheral, but enforces that only
the allowed partition uses it. This technique is frequently used in embedded systems due to the use of home
designed (or customised) peripherals.

3 XtratuM Overview

XtratuM 1.0 [11, 12] was designed initally as a substitution of the RTLinux [15, 4] to achieve temporal and
spatial requirements. XtratuM was designed as a nanokernel which virtualises the essential hardware devices
to execute concurrently several OSes, being at least one of these OSes a RTOS. The other hardware devices
(including booting) were left to a special domain, named root domain. The use of this approach let us speed
up the implementation of a first working prototype. Like RTLinux before, XtratuM was implemented as a
LKM which, once loaded, takes over the box; Linux was executed as the root domain. XtratuM and the
root domain still shared the same memory sapce. Nevertheless, the rest of the domains were run in different
memory maps, providing partial space isolation.

After this experience, it was redesigned to be independent of Linux and bootable. The result of this is
XtratuM 2.2 [13]. In the rest of this paper, the term XtratuM will refer to this second version. This version is
being used to build a TSP-based solution for payload on-board software, highly generic and reusable, project
named LVCUGEN [2]. TSP (Time and Space Partitioning) based architecture has been identified as the
best solution to ease and secure reuse, enabling a strong decoupling of the generic features to be developed,
validated and maintained in mission specific data processing [3].

XtratuM is a type 1 hypervisor that uses para-virtualization. The para-virtualized operations are as close
to the hardware as possible. Therefore, porting an operating system that already works on the native system
is a simple task: replace some parts of the operating system HAL (Hardware Abstraction Layer) with the
corresponding hypercalls.

The ARINC-653 [1] standard specifies the baseline operating environment for application software used
within Integrated Modular Avionics (IMA), based on a partitioned arquitecture. Although not explicitly
stated in the standard, it was developed considering that the underlaying technology used to implement the
partitions is the separation kernel. Athough it is not an hypervisor standard, some parts of the APEX model
of ARINC-653 are very close to the functionality provided by an hypervisor. For this reason, it was used as

2Conflicting instructions: instructions that operate directly on the native hardware and may break the isolation.



a reference in the design of XtratuM. It is not our intention to convert XtratuM in an ARINC-653 compliant
system.

It defines both, the API and operation of the partitions, and also how the threads or processes are
managed inside each partition.

In an hypervisor, and in particular in XtratuM, a partition is a virtual computer rather than a group
of strongly isolated processes. When multi-threading (or tasking) support is needed in a partition, then an
operating system or a run-time support library has to provide support to the application threads. In fact, it
is possible to run a different operating system on each XtratuM partition.

XtratuM was designed to meet safety critical real-time requirements. The most relevant features are:

• Bare hypervisor.

• Employs para-virtualisation techniques.

• An hypervisor designed for embedded systems: some devices can be directly managed by a designated
partition.

• Strong temporal isolation: fixed cyclic scheduler.

• Strong spatial isolation: all partitions are executed in processor user mode, and do not share memory.

• Fine grain hardware resource allocation via a configuration file.

• Robust communication mechanisms (XtratuM sampling and queuing ports).

4 Architecture and design

Figure 1 shows the complete system architecture.

Figure 1: System architecture.

The main components of this architecture are:

Hypervisor XtratuM is in charge of virtalisation services to partitions. It is executed in supervisor pro-
cessor mode and virtualises the cpu, memory, interrupts and some specific peripherals. The internal
XtratuM architecture includes: memory management, scheduling (fixed cyclic scheduling), interrupt
management, clock and timers management, partition communication management (ARINC-653 com-
munication model) and health monitoring. A more detailed explanation of each component will be
detailed in the full paper.

Partitions A partition is an execution environment managed by the hypervisor which uses the virtualised
services. Each partition consists of one or more concurrent processes (implemented by the operating
system of each partition), sharing access to processor resources based upon the requirements of the
application. The partition code can be:



• An application compiled to be executed on a bare-machine (bare-application).

A real-time operating system (or runtime support) and its applications.

•• A general purpose operating system and its applications.

Partitions need to be virtualised to be executed on top of an hypervisor.Depending on the type of
execution environment, the virtualisation implications in each case can be summarised as:

Bare application The application has to be virtualised using the services provided by XtratuM. The
application is designed to run directly on the hardware and it has to be aware about it.

Operating system application When the application runs on top of a (real-time) operating system,
it uses the services provided by the operating system and does not need to be virtualised. But the
operating system has to deal with the virtualisation. The operating system has to be virtualised
(ported on top of XtratuM).

Two different type of partitions can be defined: supervisor () and user ().

Partitions can send/receive messages to/from other partitions. The basic mechanisms provided are
sampling a queuing ports as defined in ARINC-653.

4.1 Design issues

XtratuM has designed specifically to meet real-time constraints and be as efficient as possible. The main
decissions involving these requirements are:

XtratuM has been designed specifically to meet real-time constraints and to be as efficient as possible.
The main decissions involving these requirements are:

Data structures are static: All data structures are pre-defined at build time from the configuration file;
therefore: 1) more efficient algorithms can be used; 2) the exact resources used by XtratuM are known.

XtratuM code is non-preemptive: 3 Although this feature is desirable in most operating systems, there
is no benefits in the case of a small hypervisor. The code is simpler (no fine grain critical sections) and
faster.

All services (hypercalls) are deterministic and fast: XtratuM provides the minimal services to guar-
antee the temporal and spatial isolation of partitions.

Peripherals are managed by partitions. XtratuM only supervises the access to IO ports as defined in
the configuration file.

Interrupt occurrence isolation: When a partition is under execution, only the interrupts managed by
this partition are enabled, which minimizes inter-partition interferences though hardware.

Full control of the resources used by XtratuM and the partitions. All the system resources allo-
cated to partitions are specified in a configuration file.

One-shot timer: It provides a 1 microsecond resolution both for timers and clocks with a very low overhead.

4.2 LEON2 virtualisation issues

The SPARC v8 architecture does not provide any kind of virtualization support. It implements the classical
two privilege levels: supervisor and user; used by the operating system to control user applications. In order
to guarantee the isolation, partition code has to be executed in user mode; only XtratuM can be executed in
supervisor mode.

Additionally, the design of XtratuM for LEON2 processors introduce some additional aspects as the
register window mechanism and the MPU (LEON2 without MMU).

3Note that XtratuM is non-preemptive, but it is prepared to be re-entrant, which allows multiple processors to execute
concurrently XtratuM code.



5 System configuration and deployment

The integrator, jointly with the partition developers, have to define the resources allocated to each partition.
The configuration file that contains all the information allocated to each partition as well as specific XtratuM
parameters is called XM CF.xml. It contains the information as: memory requirements, processor sharing,
peripherals, health monitoring actions, etc.

Memory requirements: The amount of physical memory available in the board and the memory allocated
to each partition.

Processor sharing: How the processor is allocated to each partition: the scheduling plan.
Native peripherals: Those peripherals not managed by XtratuM can be used by one partition. The I/O

port ranges and the interrupt line if any.
Health monitoring: How the detected error are managed: direct action, delivered to the offending parti-

tion, create a log entry, etc.
Inter-partition communication: The ports that each partition can use and the channels that link the

source and destination ports.

Since XM CF.xml defines the resources allocated to each partition, this file represents a contract between the
integrator and the partition developers. A partner (the integrator or any of the partition developers)
should not change the contents of the configuration file on its own. All the partners should be aware of the
changes and should agree in the new configuration in order to avoid problems later during the integration
phase.

In order to reduce the complexity of the XtratuM hypervisor, the XM CF.xml is parsed and translated
into a binary representation that can be directly used by XtratuM code. This process is performed by two
tools xmcparser and xmcbuilder.

In order to ensure that each partition does not depend on or affect other partitions or the hypervisor
due to shared symbols. The partition binary is not an ELF file. It is a raw binary file which contains the
machine code and the initialized data.

The system image is a single file which contains all the code, data and configuration information that
will be loaded in the target board. The tool xmpack is a program that reads all the executable images and
the configuration files and produces the system image. The final system image also contains the necessary
code to boot the system. The system image file can be written into the ROM of the board.

Compile
& Link

xm_core.bin

XM_CF.xml

xmcf_parserXM_CT.c

xmct_builder

xm_embpack

XtratuM
Source Code

libxm.a

Partition 1
Source codeBuild static

executable

libxm.a

Partition1.bin

Partition 2
Source codeBuild static

executable

libxm.a

Partition2.bin

XM_CT.bin

.config

autoconfig.h

Source code
Configuration
(menuconfig)

dummy.bin

1

2

3

5

Custom_CT 2

Partition2.bin

Custom_CT 1

Partition1.bin

XM_CT.bin

xm_core.o

ct_conf_tab

4

Figure 2: The big picture of building a XtratuM system.



6 Performance Evaluation

In this section we provide the initial evaluation of XtratuM for LEON2 processor. A development board
(GR-CPCI-AT697 LEON2-FT 80MHz with 8Mb flash PROM and 4 Mb RAM, 33 MHz 32-bit PCI bus) has
been used during the evaluation.

The following metrics have been measured:

• Partition context switch: Time needed by the hypervisor to switch between partitions. Three main
activities can be identified:

1. Save the context
2. Timer interrupt management
3. Scheduling decision
4. Load the context of the new partition

• Clock interrupt management: Time needed to process a clock interrupt
• Effective slot duration: Time where the partition is executing partition code during a slot.
• Partition performance loss: This measurement provides a measure of the overhead introduced by Xtra-

tuM. It is measured at partition level.
• Hypercall cost: Time spent in some of the hypercalls

6.1 Partition context switch

The measures involving internal activity of XtratuM have been measured adding breakpoints at the begining
and end of the code to be measured. Next table presents the activities involved in a partition context switch
and the cost measures (in microseconds).

Internal operation Time (microseconds)
Partition Context switch 27
1. Save the context 5
2. Timer interrupt management 9
3. Scheduler 8
4. Load the context 5
Effective slot duration Slot duration - 27

Table 1: Partition context switch measurement.

6.2 Performance evaluation

In order to evaluate the partition performance loss a scenario consisting in 3 partitions with the same code
which increments a counter. They write in a sampling port the address of the counter. A forth partition
reads the ports and prints the counter value of the each partition.

In this scenario, several plans are built:

Case 1 Partitions 1,2 and 3 are executed sequentially with a slot duration of 1 second. The scheduling plan
consists in the execution of p1; p2; p3; p4. When p4 is executed, it reads the final counter of the
partitions executed during 1 second. This case is taken as reference.

Case 2 Partitions 1,2 and 3 are executed sequentially with a slot duration of 0.1 second. The scheduling
plan consists in the execution of 10 sequences of p1; p2; p3;... (10 times)...; p4. When p4 is executed,
it reads the final counter of the partitions executed 10 times (1 second).

Case 3 Partitions 1,2 and 3 are executed sequentially with a slot duration of 0.2 second. The scheduling
plan consists in the execution of 5 sequences of p1; p2; p3;... (5 times)...; p4. When p4 is executed, it
reads the final counter of the partitions executed 5 times (1 second).

Case 4 Partitions 1,2 and 3 are executed sequentially with a slot duration of 0.2 second. The scheduling
plan consists in the execution of 5 sequences of p1; gap; p2; gap; p3;gap ... (5 times)...; p4. When p4
is executed, it reads the final counter of the partitions executed 5 times (1 second).



case 1 case 2 case 3
Average 11428202 11426656 11424764
Difference 0 1546 3438
Performance lost 0 0,01% 0,03%

Table 2: Case 1,2 and 3 measurements

Next table compares the results achieved by the three first cases. The values shown are the counter
achieved each major frame.

Next table compares the results of cases 2 and 4. The difference is a gap introduced each time a slot is
planned. As it can see in the table the difference is not significative.

case 2 case 4
Average 11426656 11426715
Difference 59 0
Loss of performance 0,0001% 0,00

Table 3: Case 2 and 4 measurements

6.3 Performance lost due to the number of partitions.

In order to evaluate the effect of the number of partitions, two cases has been defined.

Case 5 3 Partitions are executed sequentially with a slot duration of 100 miliseconds. The scheduling plan
consists in the execution of p1; p2; p3; p4. When p4 is executed, it reads the final counter of the
partitions executed during 1 second.

Case 6 8 Partitions are executed sequentially with a slot duration of 100 miliseconds. The scheduling plan
consists in the execution of p1; p2; p3; p4. When p4 is executed, it reads the final counter of the
partitions executed during 1 second.

Next tables show the results in each case and a comparison of both cases.

Case 5 Partition 1 Partition 2 Partition 3
Avg 1142484 1142484 1142474
Max 1142500 1142488 1142476
Min 1142468 1142474 1142468
Stdev 3,49 4,98 4,09

Table 4: Case 5: 3 partitions measurements
Case 6 Part. 1 Part. 2 Part. 3 Part. 4 Part. 5 Part. 6 Part. 7 Part. 8
Avg 1142477 1142484 1142475 1142474 1142474 1142477 1142475 1142477
Max 1142488 1142487 1142487 1142476 1142476 1142477 1142477 1142477
Min 1142481 1142473 1142475 1142473 1142444 1142477 1142464 1142477
Stdev. 3,12 3,93 1,71 0,49 4,57 0.00 0,42 0.00

Table 5: Case 5: 8 partitions measurements
Case 5 Case 6 Difference (C5 - C6)

Average 1142484 1142477 4
Avg 1142484 1142484 0
Max 1142500 1142488 12
Min 1142468 1142474 6

Table 6: Cases 5 and 6 comparison



6.4 Hypercall cost

Several tests has been designed to measure the cost of hypercalls. All hypercalls except those that perform a
copy of the data sent or receive (read or write in ports) should have a constant cost. read and write operation
on ports perform a copy of the data stream to the kernel space.

The cost measured of some of the hypercalls are shown in the next table.

Hypercall Time Hypercall Time
XM get time(XM HW CLOCK) 5 XM hm open 31
XM get time(XM EXEC CLOCK) 7 XM hm status 14
XM set timer(XM HW CLOCK) 13 XM trace open 66
XM set timer(XM EXEC CLOCK) 13 XM trace status 5
XM enable irqs 5 XM trace event 13
XM disable irqs 5 XM unmask irq 5
XM create sampling port 65 XM create queuing message 68
XM write sampling port (32) 15 XM send queuing message (32) 15
XM write sampling port (256) 17 XM send queuing message (256) 20
XM write sampling port (1024) 32 XM send queuing message (1024) 30
XM write sampling port (4096) 87 XM send queuing message (4096) 81
XM read sampling port (32) 16 XM receive queuing message (32) 15
XM read sampling port (256) 18 XM receive queuing message (256) 19
XM read sampling port (1024) 30 XM receive queuing message (1024) 32
XM read sampling port (4096) 83 XM receive queuing message (4096) 92

Table 7: Hypercalls measurement

In read/write operation on ports numbers in parenthesis indicate the message length in bytes. Time units
in microseconds.

7 Conclusions and Future Work

XtratuM 2.2 is the first implementation of an hypervisor for the LEON2 processor. The initial versions
of XtratuM4 were designed for conventional real-time systems: dynamic partition loading, fixed priority
scheduling of partitions, Linux in a partition, etc.

This version of XtratuM, besides of the porting to the SPARC v8 architecture, is a major redesign to meet
highly critical requirements: health monitoring services, cyclic plan scheduling, strict resource allocation via
a configuration file, etc.

The resources allocated to each partition (processor time, memory space, I/O ports, and interrupts,
communication ports, monitoring events, etc.) are defined in a configuration file (with XML syntax). A tool
to analyze and compile the configuration file has also been developed.

Two issues of the initial implementation of XtratuM have not ported to LEON2: the MMU and the
multiprocessor support. The effort of porting the MMU support (for LEON3 with MMU) can be relatively
low and will permit to step up the spatial isolation of partitions. XtratuM 2.2 code has been designed to be
multiprocessor (the x86 version was multiprocessor). Therefore, XtratuM may be the faster and safer way
to use a multiprocessor system (SMP5) in a highly critical environment.

This work was initially planned as a prototype development, however, the achieved result, in efficency and
performance, is closer to a product than a proof of concept. Next step is the formal model of the hypervisor
as first step to the certification.

Partitioned based scheduling tools is one of the weak areas in the integration of partitioned systems with
real-time contraints. The improvement of the scheduling tools to optimise the scheduling plan in another
important activity to be done in the next months.

4XtratuM 1.2 and 2.0 were implemented in the x86 architecture only.
5SMP: Symmetric Muli-Processor



References

[1] Airlines Electronic Engineering Committee, 2551 Riva Road, Annapolis, Maryland 21401-7435. Avionics
Application Software Standard Interface (ARINC-653), March 1996.

[2] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo. Tsp-based generic payload on-board software. In
DASIA 2009. DAta Systems In Aerospace., May. Istanbul 2009.

[3] P. Arberet and J. Miro. Ima for space : status and considerations. In ERTS 2008. Embedded Real-Time
Software., Jannuary. Toulouse. France 2008.

[4] M. Barabanov. A Linux-Based Real-Time Operating System. Master’s thesis, New Mexico Institute of
Mining and Technology, Socorro, New Mexico, June 1997.

[5] IBM Corporation. IBM systems virtualization. Version 2 Release 1 (2005). http://publib.boulder.ibm.-
com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf.

[6] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R. Neuge-
bauer. Xen and the art of virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[7] R.P. Goldberg. Survey of virtual machine research. IEEE Computer Magazine, 7(6):34–45, 1974.

[8] David B. Golub, Randall W. Dean, Alessandro Forin, and Richard F. Rashid. Unix as an application
program. In USENIX Summer, pages 87–95, 1990.

[9] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean Wolter. The per-
formance of µkernel-based systems. In SOSP, pages 66–77, 1997.

[10] Jochen Liedtke. On microkernel construction. In Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), Copper Mountain Resort, CO, December 1995.

[11] M. Masmano, I. Ripoll, and A. Crespo. Introduction to XtratuM. 2005.

[12] M. Masmano, I. Ripoll, and A. Crespo. An overview of the XtratuM nanokernel. In Proceedings of the
Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), 2005.

[13] M. Masmano, I. Ripoll, A. Crespo, J.J. Metge, and P. Arberet. Xtratum: An open source hypervisor for
tsp embedded systems in aerospace. In DASIA 2009. DAta Systems In Aerospace., May. Istanbul 2009.

[14] SCOPE Promoting Open Carrier Grade Base Platforms. Virtualization: State of the Art, April 2008.
http://www.scope-alliance.org.

[15] V. Yodaiken. The RTLinux manifesto. http://www.fsmlabs.com/developers/white papers/rtmanifesto.-
pdf.

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf
http://www.scope-alliance.org

	Introduction
	Virtualising technologies overview
	Para-virtualization
	Dedicated devices

	XtratuM Overview
	Architecture and design 
	Design issues
	LEON2 virtualisation issues

	System configuration and deployment
	Performance Evaluation
	Partition context switch
	Performance evaluation
	Performance lost due to the number of partitions.
	Hypercall cost

	Conclusions and Future Work

