IOMMUFD¶
- Author:
Jason Gunthorpe
- Author:
Kevin Tian
Overview¶
IOMMUFD is the user API to control the IOMMU subsystem as it relates to managing IO page tables from userspace using file descriptors. It intends to be general and consumable by any driver that wants to expose DMA to userspace. These drivers are eventually expected to deprecate any internal IOMMU logic they may already/historically implement (e.g. vfio_iommu_type1.c).
At minimum iommufd provides universal support of managing I/O address spaces and I/O page tables for all IOMMUs, with room in the design to add non-generic features to cater to specific hardware functionality.
In this context the capital letter (IOMMUFD) refers to the subsystem while the small letter (iommufd) refers to the file descriptors created via /dev/iommu for use by userspace.
Key Concepts¶
User Visible Objects¶
Following IOMMUFD objects are exposed to userspace:
IOMMUFD_OBJ_IOAS, representing an I/O address space (IOAS), allowing map/unmap of user space memory into ranges of I/O Virtual Address (IOVA).
The IOAS is a functional replacement for the VFIO container, and like the VFIO container it copies an IOVA map to a list of iommu_domains held within it.
IOMMUFD_OBJ_DEVICE, representing a device that is bound to iommufd by an external driver.
IOMMUFD_OBJ_HW_PAGETABLE, representing an actual hardware I/O page table (i.e. a single struct iommu_domain) managed by the iommu driver.
The IOAS has a list of HW_PAGETABLES that share the same IOVA mapping and it will synchronize its mapping with each member HW_PAGETABLE.
All user-visible objects are destroyed via the IOMMU_DESTROY uAPI.
The diagram below shows relationship between user-visible objects and kernel datastructures (external to iommufd), with numbers referred to operations creating the objects and links:
_________________________________________________________
| iommufd |
| [1] |
| _________________ |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | [3] [2] |
| | | ____________ __________ |
| | IOAS |<--| |<------| | |
| | | |HW_PAGETABLE| | DEVICE | |
| | | |____________| |__________| |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| |_________________| | | |
| | | | |
|_________|___________________|___________________|_______|
| | |
| _____v______ _______v_____
| PFN storage | | | |
|------------>|iommu_domain| |struct device|
|____________| |_____________|
IOMMUFD_OBJ_IOAS is created via the IOMMU_IOAS_ALLOC uAPI. An iommufd can hold multiple IOAS objects. IOAS is the most generic object and does not expose interfaces that are specific to single IOMMU drivers. All operations on the IOAS must operate equally on each of the iommu_domains inside of it.
IOMMUFD_OBJ_DEVICE is created when an external driver calls the IOMMUFD kAPI to bind a device to an iommufd. The driver is expected to implement a set of ioctls to allow userspace to initiate the binding operation. Successful completion of this operation establishes the desired DMA ownership over the device. The driver must also set the driver_managed_dma flag and must not touch the device until this operation succeeds.
IOMMUFD_OBJ_HW_PAGETABLE is created when an external driver calls the IOMMUFD kAPI to attach a bound device to an IOAS. Similarly the external driver uAPI allows userspace to initiate the attaching operation. If a compatible pagetable already exists then it is reused for the attachment. Otherwise a new pagetable object and iommu_domain is created. Successful completion of this operation sets up the linkages among IOAS, device and iommu_domain. Once this completes the device could do DMA.
Every iommu_domain inside the IOAS is also represented to userspace as a HW_PAGETABLE object.
Note
Future IOMMUFD updates will provide an API to create and manipulate the HW_PAGETABLE directly.
A device can only bind to an iommufd due to DMA ownership claim and attach to at most one IOAS object (no support of PASID yet).
Kernel Datastructure¶
User visible objects are backed by following datastructures:
iommufd_ioas for IOMMUFD_OBJ_IOAS.
iommufd_device for IOMMUFD_OBJ_DEVICE.
iommufd_hw_pagetable for IOMMUFD_OBJ_HW_PAGETABLE.
Several terminologies when looking at these datastructures:
Automatic domain - refers to an iommu domain created automatically when attaching a device to an IOAS object. This is compatible to the semantics of VFIO type1.
Manual domain - refers to an iommu domain designated by the user as the target pagetable to be attached to by a device. Though currently there are no uAPIs to directly create such domain, the datastructure and algorithms are ready for handling that use case.
In-kernel user - refers to something like a VFIO mdev that is using the IOMMUFD access interface to access the IOAS. This starts by creating an iommufd_access object that is similar to the domain binding a physical device would do. The access object will then allow converting IOVA ranges into struct page * lists, or doing direct read/write to an IOVA.
iommufd_ioas serves as the metadata datastructure to manage how IOVA ranges are mapped to memory pages, composed of:
struct io_pagetable holding the IOVA map
struct iopt_area’s representing populated portions of IOVA
struct iopt_pages representing the storage of PFNs
struct iommu_domain representing the IO page table in the IOMMU
struct iopt_pages_access representing in-kernel users of PFNs
struct xarray
pinned_pfns holding a list of pages pinned by in-kernel users
Each iopt_pages represents a logical linear array of full PFNs. The PFNs are ultimately derived from userspace VAs via an mm_struct. Once they have been pinned the PFNs are stored in IOPTEs of an iommu_domain or inside the pinned_pfns xarray if they have been pinned through an iommufd_access.
PFN have to be copied between all combinations of storage locations, depending on what domains are present and what kinds of in-kernel “software access” users exist. The mechanism ensures that a page is pinned only once.
An io_pagetable is composed of iopt_areas pointing at iopt_pages, along with a list of iommu_domains that mirror the IOVA to PFN map.
Multiple io_pagetable-s, through their iopt_area-s, can share a single iopt_pages which avoids multi-pinning and double accounting of page consumption.
iommufd_ioas is shareable between subsystems, e.g. VFIO and VDPA, as long as devices managed by different subsystems are bound to a same iommufd.
IOMMUFD User API¶
General ioctl format
The ioctl interface follows a general format to allow for extensibility. Each ioctl is passed in a structure pointer as the argument providing the size of the structure in the first u32. The kernel checks that any structure space beyond what it understands is 0. This allows userspace to use the backward compatible portion while consistently using the newer, larger, structures.
ioctls use a standard meaning for common errnos:
ENOTTY: The IOCTL number itself is not supported at all
E2BIG: The IOCTL number is supported, but the provided structure has non-zero in a part the kernel does not understand.
EOPNOTSUPP: The IOCTL number is supported, and the structure is understood, however a known field has a value the kernel does not understand or support.
EINVAL: Everything about the IOCTL was understood, but a field is not correct.
ENOENT: An ID or IOVA provided does not exist.
ENOMEM: Out of memory.
EOVERFLOW: Mathematics overflowed.
As well as additional errnos, within specific ioctls.
-
struct iommu_destroy¶
ioctl(IOMMU_DESTROY)
Definition:
struct iommu_destroy {
__u32 size;
__u32 id;
};
Members
size
sizeof(
struct iommu_destroy
)id
iommufd object ID to destroy. Can be any destroyable object type.
Description
Destroy any object held within iommufd.
-
struct iommu_ioas_alloc¶
ioctl(IOMMU_IOAS_ALLOC)
Definition:
struct iommu_ioas_alloc {
__u32 size;
__u32 flags;
__u32 out_ioas_id;
};
Members
size
sizeof(
struct iommu_ioas_alloc
)flags
Must be 0
out_ioas_id
Output IOAS ID for the allocated object
Description
Allocate an IO Address Space (IOAS) which holds an IO Virtual Address (IOVA) to memory mapping.
-
struct iommu_iova_range¶
ioctl(IOMMU_IOVA_RANGE)
Definition:
struct iommu_iova_range {
__aligned_u64 start;
__aligned_u64 last;
};
Members
start
First IOVA
last
Inclusive last IOVA
Description
An interval in IOVA space.
-
struct iommu_ioas_iova_ranges¶
ioctl(IOMMU_IOAS_IOVA_RANGES)
Definition:
struct iommu_ioas_iova_ranges {
__u32 size;
__u32 ioas_id;
__u32 num_iovas;
__u32 __reserved;
__aligned_u64 allowed_iovas;
__aligned_u64 out_iova_alignment;
};
Members
size
sizeof(
struct iommu_ioas_iova_ranges
)ioas_id
IOAS ID to read ranges from
num_iovas
Input/Output total number of ranges in the IOAS
__reserved
Must be 0
allowed_iovas
Pointer to the output array of
struct iommu_iova_range
out_iova_alignment
Minimum alignment required for mapping IOVA
Description
Query an IOAS for ranges of allowed IOVAs. Mapping IOVA outside these ranges is not allowed. num_iovas will be set to the total number of iovas and the allowed_iovas[] will be filled in as space permits.
The allowed ranges are dependent on the HW path the DMA operation takes, and can change during the lifetime of the IOAS. A fresh empty IOAS will have a full range, and each attached device will narrow the ranges based on that device’s HW restrictions. Detaching a device can widen the ranges. Userspace should query ranges after every attach/detach to know what IOVAs are valid for mapping.
On input num_iovas is the length of the allowed_iovas array. On output it is the total number of iovas filled in. The ioctl will return -EMSGSIZE and set num_iovas to the required value if num_iovas is too small. In this case the caller should allocate a larger output array and re-issue the ioctl.
out_iova_alignment returns the minimum IOVA alignment that can be given to IOMMU_IOAS_MAP/COPY. IOVA’s must satisfy:
starting_iova % out_iova_alignment == 0
(starting_iova + length) % out_iova_alignment == 0
out_iova_alignment can be 1 indicating any IOVA is allowed. It cannot be higher than the system PAGE_SIZE.
-
struct iommu_ioas_allow_iovas¶
ioctl(IOMMU_IOAS_ALLOW_IOVAS)
Definition:
struct iommu_ioas_allow_iovas {
__u32 size;
__u32 ioas_id;
__u32 num_iovas;
__u32 __reserved;
__aligned_u64 allowed_iovas;
};
Members
size
sizeof(
struct iommu_ioas_allow_iovas
)ioas_id
IOAS ID to allow IOVAs from
num_iovas
Input/Output total number of ranges in the IOAS
__reserved
Must be 0
allowed_iovas
Pointer to array of
struct iommu_iova_range
Description
Ensure a range of IOVAs are always available for allocation. If this call succeeds then IOMMU_IOAS_IOVA_RANGES will never return a list of IOVA ranges that are narrower than the ranges provided here. This call will fail if IOMMU_IOAS_IOVA_RANGES is currently narrower than the given ranges.
When an IOAS is first created the IOVA_RANGES will be maximally sized, and as devices are attached the IOVA will narrow based on the device restrictions. When an allowed range is specified any narrowing will be refused, ie device attachment can fail if the device requires limiting within the allowed range.
Automatic IOVA allocation is also impacted by this call. MAP will only allocate within the allowed IOVAs if they are present.
This call replaces the entire allowed list with the given list.
-
enum iommufd_ioas_map_flags¶
Flags for map and copy
Constants
IOMMU_IOAS_MAP_FIXED_IOVA
If clear the kernel will compute an appropriate IOVA to place the mapping at
IOMMU_IOAS_MAP_WRITEABLE
DMA is allowed to write to this mapping
IOMMU_IOAS_MAP_READABLE
DMA is allowed to read from this mapping
-
struct iommu_ioas_map¶
ioctl(IOMMU_IOAS_MAP)
Definition:
struct iommu_ioas_map {
__u32 size;
__u32 flags;
__u32 ioas_id;
__u32 __reserved;
__aligned_u64 user_va;
__aligned_u64 length;
__aligned_u64 iova;
};
Members
size
sizeof(
struct iommu_ioas_map
)flags
Combination of
enum iommufd_ioas_map_flags
ioas_id
IOAS ID to change the mapping of
__reserved
Must be 0
user_va
Userspace pointer to start mapping from
length
Number of bytes to map
iova
IOVA the mapping was placed at. If IOMMU_IOAS_MAP_FIXED_IOVA is set then this must be provided as input.
Description
Set an IOVA mapping from a user pointer. If FIXED_IOVA is specified then the mapping will be established at iova, otherwise a suitable location based on the reserved and allowed lists will be automatically selected and returned in iova.
If IOMMU_IOAS_MAP_FIXED_IOVA is specified then the iova range must currently be unused, existing IOVA cannot be replaced.
-
struct iommu_ioas_copy¶
ioctl(IOMMU_IOAS_COPY)
Definition:
struct iommu_ioas_copy {
__u32 size;
__u32 flags;
__u32 dst_ioas_id;
__u32 src_ioas_id;
__aligned_u64 length;
__aligned_u64 dst_iova;
__aligned_u64 src_iova;
};
Members
size
sizeof(
struct iommu_ioas_copy
)flags
Combination of
enum iommufd_ioas_map_flags
dst_ioas_id
IOAS ID to change the mapping of
src_ioas_id
IOAS ID to copy from
length
Number of bytes to copy and map
dst_iova
IOVA the mapping was placed at. If IOMMU_IOAS_MAP_FIXED_IOVA is set then this must be provided as input.
src_iova
IOVA to start the copy
Description
Copy an already existing mapping from src_ioas_id and establish it in dst_ioas_id. The src iova/length must exactly match a range used with IOMMU_IOAS_MAP.
This may be used to efficiently clone a subset of an IOAS to another, or as a kind of ‘cache’ to speed up mapping. Copy has an efficiency advantage over establishing equivalent new mappings, as internal resources are shared, and the kernel will pin the user memory only once.
-
struct iommu_ioas_unmap¶
ioctl(IOMMU_IOAS_UNMAP)
Definition:
struct iommu_ioas_unmap {
__u32 size;
__u32 ioas_id;
__aligned_u64 iova;
__aligned_u64 length;
};
Members
size
sizeof(
struct iommu_ioas_unmap
)ioas_id
IOAS ID to change the mapping of
iova
IOVA to start the unmapping at
length
Number of bytes to unmap, and return back the bytes unmapped
Description
Unmap an IOVA range. The iova/length must be a superset of a previously mapped range used with IOMMU_IOAS_MAP or IOMMU_IOAS_COPY. Splitting or truncating ranges is not allowed. The values 0 to U64_MAX will unmap everything.
-
enum iommufd_option¶
ioctl(IOMMU_OPTION_RLIMIT_MODE) and ioctl(IOMMU_OPTION_HUGE_PAGES)
Constants
IOMMU_OPTION_RLIMIT_MODE
Change how RLIMIT_MEMLOCK accounting works. The caller must have privilege to invoke this. Value 0 (default) is user based accouting, 1 uses process based accounting. Global option, object_id must be 0
IOMMU_OPTION_HUGE_PAGES
Value 1 (default) allows contiguous pages to be combined when generating iommu mappings. Value 0 disables combining, everything is mapped to PAGE_SIZE. This can be useful for benchmarking. This is a per-IOAS option, the object_id must be the IOAS ID.
-
enum iommufd_option_ops¶
ioctl(IOMMU_OPTION_OP_SET) and ioctl(IOMMU_OPTION_OP_GET)
Constants
IOMMU_OPTION_OP_SET
Set the option’s value
IOMMU_OPTION_OP_GET
Get the option’s value
-
struct iommu_option¶
iommu option multiplexer
Definition:
struct iommu_option {
__u32 size;
__u32 option_id;
__u16 op;
__u16 __reserved;
__u32 object_id;
__aligned_u64 val64;
};
Members
size
sizeof(
struct iommu_option
)option_id
One of
enum iommufd_option
op
One of
enum iommufd_option_ops
__reserved
Must be 0
object_id
ID of the object if required
val64
Option value to set or value returned on get
Description
Change a simple option value. This multiplexor allows controlling options on objects. IOMMU_OPTION_OP_SET will load an option and IOMMU_OPTION_OP_GET will return the current value.
-
enum iommufd_vfio_ioas_op¶
IOMMU_VFIO_IOAS_* ioctls
Constants
IOMMU_VFIO_IOAS_GET
Get the current compatibility IOAS
IOMMU_VFIO_IOAS_SET
Change the current compatibility IOAS
IOMMU_VFIO_IOAS_CLEAR
Disable VFIO compatibility
-
struct iommu_vfio_ioas¶
ioctl(IOMMU_VFIO_IOAS)
Definition:
struct iommu_vfio_ioas {
__u32 size;
__u32 ioas_id;
__u16 op;
__u16 __reserved;
};
Members
size
sizeof(
struct iommu_vfio_ioas
)ioas_id
For IOMMU_VFIO_IOAS_SET the input IOAS ID to set For IOMMU_VFIO_IOAS_GET will output the IOAS ID
op
One of
enum iommufd_vfio_ioas_op
__reserved
Must be 0
Description
The VFIO compatibility support uses a single ioas because VFIO APIs do not support the ID field. Set or Get the IOAS that VFIO compatibility will use. When VFIO_GROUP_SET_CONTAINER is used on an iommufd it will get the compatibility ioas, either by taking what is already set, or auto creating one. From then on VFIO will continue to use that ioas and is not effected by this ioctl. SET or CLEAR does not destroy any auto-created IOAS.
-
enum iommufd_hwpt_alloc_flags¶
Flags for HWPT allocation
Constants
IOMMU_HWPT_ALLOC_NEST_PARENT
If set, allocate a HWPT that can serve as the parent HWPT in a nesting configuration.
IOMMU_HWPT_ALLOC_DIRTY_TRACKING
Dirty tracking support for device IOMMU is enforced on device attachment
-
enum iommu_hwpt_vtd_s1_flags¶
Intel VT-d stage-1 page table entry attributes
Constants
IOMMU_VTD_S1_SRE
Supervisor request
IOMMU_VTD_S1_EAFE
Extended access enable
IOMMU_VTD_S1_WPE
Write protect enable
-
struct iommu_hwpt_vtd_s1¶
Intel VT-d stage-1 page table info (IOMMU_HWPT_DATA_VTD_S1)
Definition:
struct iommu_hwpt_vtd_s1 {
__aligned_u64 flags;
__aligned_u64 pgtbl_addr;
__u32 addr_width;
__u32 __reserved;
};
Members
flags
Combination of
enum iommu_hwpt_vtd_s1_flags
pgtbl_addr
The base address of the stage-1 page table.
addr_width
The address width of the stage-1 page table
__reserved
Must be 0
-
enum iommu_hwpt_data_type¶
IOMMU HWPT Data Type
Constants
IOMMU_HWPT_DATA_NONE
no data
IOMMU_HWPT_DATA_VTD_S1
Intel VT-d stage-1 page table
-
struct iommu_hwpt_alloc¶
ioctl(IOMMU_HWPT_ALLOC)
Definition:
struct iommu_hwpt_alloc {
__u32 size;
__u32 flags;
__u32 dev_id;
__u32 pt_id;
__u32 out_hwpt_id;
__u32 __reserved;
__u32 data_type;
__u32 data_len;
__aligned_u64 data_uptr;
};
Members
size
sizeof(
struct iommu_hwpt_alloc
)flags
Combination of
enum iommufd_hwpt_alloc_flags
dev_id
The device to allocate this HWPT for
pt_id
The IOAS or HWPT to connect this HWPT to
out_hwpt_id
The ID of the new HWPT
__reserved
Must be 0
data_type
One of
enum iommu_hwpt_data_type
data_len
Length of the type specific data
data_uptr
User pointer to the type specific data
Description
Explicitly allocate a hardware page table object. This is the same object
type that is returned by iommufd_device_attach()
and represents the
underlying iommu driver’s iommu_domain kernel object.
A kernel-managed HWPT will be created with the mappings from the given IOAS via the pt_id. The data_type for this allocation must be set to IOMMU_HWPT_DATA_NONE. The HWPT can be allocated as a parent HWPT for a nesting configuration by passing IOMMU_HWPT_ALLOC_NEST_PARENT via flags.
A user-managed nested HWPT will be created from a given parent HWPT via pt_id, in which the parent HWPT must be allocated previously via the same ioctl from a given IOAS (pt_id). In this case, the data_type must be set to a pre-defined type corresponding to an I/O page table type supported by the underlying IOMMU hardware.
If the data_type is set to IOMMU_HWPT_DATA_NONE, data_len and data_uptr should be zero. Otherwise, both data_len and data_uptr must be given.
-
enum iommu_hw_info_vtd_flags¶
Flags for VT-d hw_info
Constants
IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17
If set, disallow read-only mappings on a nested_parent domain. https://www.intel.com/content/www/us/en/content-details/772415/content-details.html
-
struct iommu_hw_info_vtd¶
Intel VT-d hardware information
Definition:
struct iommu_hw_info_vtd {
__u32 flags;
__u32 __reserved;
__aligned_u64 cap_reg;
__aligned_u64 ecap_reg;
};
Members
flags
Combination of
enum iommu_hw_info_vtd_flags
__reserved
Must be 0
cap_reg
Value of Intel VT-d capability register defined in VT-d spec section 11.4.2 Capability Register.
ecap_reg
Value of Intel VT-d capability register defined in VT-d spec section 11.4.3 Extended Capability Register.
Description
User needs to understand the Intel VT-d specification to decode the register value.
-
enum iommu_hw_info_type¶
IOMMU Hardware Info Types
Constants
IOMMU_HW_INFO_TYPE_NONE
Used by the drivers that do not report hardware info
IOMMU_HW_INFO_TYPE_INTEL_VTD
Intel VT-d iommu info type
-
enum iommufd_hw_capabilities¶
Constants
IOMMU_HW_CAP_DIRTY_TRACKING
IOMMU hardware support for dirty tracking If available, it means the following APIs are supported:
IOMMU_HWPT_GET_DIRTY_BITMAP IOMMU_HWPT_SET_DIRTY_TRACKING
-
struct iommu_hw_info¶
ioctl(IOMMU_GET_HW_INFO)
Definition:
struct iommu_hw_info {
__u32 size;
__u32 flags;
__u32 dev_id;
__u32 data_len;
__aligned_u64 data_uptr;
__u32 out_data_type;
__u32 __reserved;
__aligned_u64 out_capabilities;
};
Members
size
sizeof(
struct iommu_hw_info
)flags
Must be 0
dev_id
The device bound to the iommufd
data_len
Input the length of a user buffer in bytes. Output the length of data that kernel supports
data_uptr
User pointer to a user-space buffer used by the kernel to fill the iommu type specific hardware information data
out_data_type
Output the iommu hardware info type as defined in the
enum iommu_hw_info_type
.__reserved
Must be 0
out_capabilities
Output the generic iommu capability info type as defined in the enum iommu_hw_capabilities.
Description
Query an iommu type specific hardware information data from an iommu behind a given device that has been bound to iommufd. This hardware info data will be used to sync capabilities between the virtual iommu and the physical iommu, e.g. a nested translation setup needs to check the hardware info, so a guest stage-1 page table can be compatible with the physical iommu.
To capture an iommu type specific hardware information data, data_uptr and its length data_len must be provided. Trailing bytes will be zeroed if the user buffer is larger than the data that kernel has. Otherwise, kernel only fills the buffer using the given length in data_len. If the ioctl succeeds, data_len will be updated to the length that kernel actually supports, out_data_type will be filled to decode the data filled in the buffer pointed by data_uptr. Input data_len == zero is allowed.
-
struct iommu_hwpt_set_dirty_tracking¶
ioctl(IOMMU_HWPT_SET_DIRTY_TRACKING)
Definition:
struct iommu_hwpt_set_dirty_tracking {
__u32 size;
__u32 flags;
__u32 hwpt_id;
__u32 __reserved;
};
Members
size
flags
Combination of enum iommufd_hwpt_set_dirty_tracking_flags
hwpt_id
HW pagetable ID that represents the IOMMU domain
__reserved
Must be 0
Description
Toggle dirty tracking on an HW pagetable.
-
enum iommufd_hwpt_get_dirty_bitmap_flags¶
Flags for getting dirty bits
Constants
IOMMU_HWPT_GET_DIRTY_BITMAP_NO_CLEAR
Just read the PTEs without clearing any dirty bits metadata. This flag can be passed in the expectation where the next operation is an unmap of the same IOVA range.
-
struct iommu_hwpt_get_dirty_bitmap¶
ioctl(IOMMU_HWPT_GET_DIRTY_BITMAP)
Definition:
struct iommu_hwpt_get_dirty_bitmap {
__u32 size;
__u32 hwpt_id;
__u32 flags;
__u32 __reserved;
__aligned_u64 iova;
__aligned_u64 length;
__aligned_u64 page_size;
__aligned_u64 data;
};
Members
size
hwpt_id
HW pagetable ID that represents the IOMMU domain
flags
Combination of
enum iommufd_hwpt_get_dirty_bitmap_flags
__reserved
Must be 0
iova
base IOVA of the bitmap first bit
length
IOVA range size
page_size
page size granularity of each bit in the bitmap
data
bitmap where to set the dirty bits. The bitmap bits each represent a page_size which you deviate from an arbitrary iova.
Description
Checking a given IOVA is dirty:
data[(iova / page_size) / 64] & (1ULL << ((iova / page_size) % 64))
Walk the IOMMU pagetables for a given IOVA range to return a bitmap with the dirty IOVAs. In doing so it will also by default clear any dirty bit metadata set in the IOPTE.
-
enum iommu_hwpt_invalidate_data_type¶
IOMMU HWPT Cache Invalidation Data Type
Constants
IOMMU_HWPT_INVALIDATE_DATA_VTD_S1
Invalidation data for VTD_S1
-
enum iommu_hwpt_vtd_s1_invalidate_flags¶
Flags for Intel VT-d stage-1 cache invalidation
Constants
IOMMU_VTD_INV_FLAGS_LEAF
Indicates whether the invalidation applies to all-levels page structure cache or just the leaf PTE cache.
-
struct iommu_hwpt_vtd_s1_invalidate¶
Intel VT-d cache invalidation (IOMMU_HWPT_INVALIDATE_DATA_VTD_S1)
Definition:
struct iommu_hwpt_vtd_s1_invalidate {
__aligned_u64 addr;
__aligned_u64 npages;
__u32 flags;
__u32 __reserved;
};
Members
addr
The start address of the range to be invalidated. It needs to be 4KB aligned.
npages
Number of contiguous 4K pages to be invalidated.
flags
Combination of
enum iommu_hwpt_vtd_s1_invalidate_flags
__reserved
Must be 0
Description
The Intel VT-d specific invalidation data for user-managed stage-1 cache invalidation in nested translation. Userspace uses this structure to tell the impacted cache scope after modifying the stage-1 page table.
Invalidating all the caches related to the page table by setting addr to be 0 and npages to be U64_MAX.
The device TLB will be invalidated automatically if ATS is enabled.
-
struct iommu_hwpt_invalidate¶
ioctl(IOMMU_HWPT_INVALIDATE)
Definition:
struct iommu_hwpt_invalidate {
__u32 size;
__u32 hwpt_id;
__aligned_u64 data_uptr;
__u32 data_type;
__u32 entry_len;
__u32 entry_num;
__u32 __reserved;
};
Members
size
sizeof(
struct iommu_hwpt_invalidate
)hwpt_id
ID of a nested HWPT for cache invalidation
data_uptr
User pointer to an array of driver-specific cache invalidation data.
data_type
One of
enum iommu_hwpt_invalidate_data_type
, defining the data type of all the entries in the invalidation request array. It should be a type supported by the hwpt pointed by hwpt_id.entry_len
Length (in bytes) of a request entry in the request array
entry_num
Input the number of cache invalidation requests in the array. Output the number of requests successfully handled by kernel.
__reserved
Must be 0.
Description
Invalidate the iommu cache for user-managed page table. Modifications on a user-managed page table should be followed by this operation to sync cache. Each ioctl can support one or more cache invalidation requests in the array that has a total size of entry_len * entry_num.
An empty invalidation request array by setting entry_num**==0 is allowed, and **entry_len and data_uptr would be ignored in this case. This can be used to check if the given data_type is supported or not by kernel.
IOMMUFD Kernel API¶
The IOMMUFD kAPI is device-centric with group-related tricks managed behind the scene. This allows the external drivers calling such kAPI to implement a simple device-centric uAPI for connecting its device to an iommufd, instead of explicitly imposing the group semantics in its uAPI as VFIO does.
-
struct iommufd_device *iommufd_device_bind(struct iommufd_ctx *ictx, struct device *dev, u32 *id)¶
Bind a physical device to an iommu fd
Parameters
struct iommufd_ctx *ictx
iommufd file descriptor
struct device *dev
Pointer to a physical device struct
u32 *id
Output ID number to return to userspace for this device
Description
A successful bind establishes an ownership over the device and returns struct iommufd_device pointer, otherwise returns error pointer.
A driver using this API must set driver_managed_dma and must not touch the device until this routine succeeds and establishes ownership.
Binding a PCI device places the entire RID under iommufd control.
The caller must undo this with iommufd_device_unbind()
-
bool iommufd_ctx_has_group(struct iommufd_ctx *ictx, struct iommu_group *group)¶
True if any device within the group is bound to the ictx
Parameters
struct iommufd_ctx *ictx
iommufd file descriptor
struct iommu_group *group
Pointer to a physical iommu_group struct
Description
True if any device within the group has been bound to this ictx, ex. via
iommufd_device_bind()
, therefore implying ictx ownership of the group.
-
void iommufd_device_unbind(struct iommufd_device *idev)¶
Parameters
struct iommufd_device *idev
Device returned by
iommufd_device_bind()
Description
Release the device from iommufd control. The DMA ownership will return back to unowned with DMA controlled by the DMA API. This invalidates the iommufd_device pointer, other APIs that consume it must not be called concurrently.
-
int iommufd_device_attach(struct iommufd_device *idev, u32 *pt_id)¶
Connect a device to an iommu_domain
Parameters
struct iommufd_device *idev
device to attach
u32 *pt_id
Input a IOMMUFD_OBJ_IOAS, or IOMMUFD_OBJ_HWPT_PAGING Output the IOMMUFD_OBJ_HWPT_PAGING ID
Description
This connects the device to an iommu_domain, either automatically or manually selected. Once this completes the device could do DMA.
The caller should return the resulting pt_id back to userspace.
This function is undone by calling iommufd_device_detach()
.
-
int iommufd_device_replace(struct iommufd_device *idev, u32 *pt_id)¶
Change the device’s iommu_domain
Parameters
struct iommufd_device *idev
device to change
u32 *pt_id
Input a IOMMUFD_OBJ_IOAS, or IOMMUFD_OBJ_HWPT_PAGING Output the IOMMUFD_OBJ_HWPT_PAGING ID
Description
This is the same as:
iommufd_device_detach();
iommufd_device_attach();
If it fails then no change is made to the attachment. The iommu driver may
implement this so there is no disruption in translation. This can only be
called if iommufd_device_attach()
has already succeeded.
-
void iommufd_device_detach(struct iommufd_device *idev)¶
Disconnect a device to an iommu_domain
Parameters
struct iommufd_device *idev
device to detach
Description
Undo iommufd_device_attach()
. This disconnects the idev from the previously
attached pt_id. The device returns back to a blocked DMA translation.
-
struct iommufd_access *iommufd_access_create(struct iommufd_ctx *ictx, const struct iommufd_access_ops *ops, void *data, u32 *id)¶
Create an iommufd_access
Parameters
struct iommufd_ctx *ictx
iommufd file descriptor
const struct iommufd_access_ops *ops
Driver’s ops to associate with the access
void *data
Opaque data to pass into ops functions
u32 *id
Output ID number to return to userspace for this access
Description
An iommufd_access allows a driver to read/write to the IOAS without using
DMA. The underlying CPU memory can be accessed using the
iommufd_access_pin_pages()
or iommufd_access_rw()
functions.
The provided ops are required to use iommufd_access_pin_pages()
.
-
void iommufd_access_destroy(struct iommufd_access *access)¶
Destroy an iommufd_access
Parameters
struct iommufd_access *access
The access to destroy
Description
The caller must stop using the access before destroying it.
-
void iommufd_access_unpin_pages(struct iommufd_access *access, unsigned long iova, unsigned long length)¶
Undo iommufd_access_pin_pages
Parameters
struct iommufd_access *access
IOAS access to act on
unsigned long iova
Starting IOVA
unsigned long length
Number of bytes to access
Description
Return the struct page’s. The caller must stop accessing them before calling this. The iova/length must exactly match the one provided to access_pages.
-
int iommufd_access_pin_pages(struct iommufd_access *access, unsigned long iova, unsigned long length, struct page **out_pages, unsigned int flags)¶
Return a list of pages under the iova
Parameters
struct iommufd_access *access
IOAS access to act on
unsigned long iova
Starting IOVA
unsigned long length
Number of bytes to access
struct page **out_pages
Output page list
unsigned int flags
IOPMMUFD_ACCESS_RW_* flags
Description
Reads length bytes starting at iova and returns the struct page * pointers. These can be kmap’d by the caller for CPU access.
The caller must perform iommufd_access_unpin_pages()
when done to balance
this.
This API always requires a page aligned iova. This happens naturally if the ioas alignment is >= PAGE_SIZE and the iova is PAGE_SIZE aligned. However smaller alignments have corner cases where this API can fail on otherwise aligned iova.
-
int iommufd_access_rw(struct iommufd_access *access, unsigned long iova, void *data, size_t length, unsigned int flags)¶
Read or write data under the iova
Parameters
struct iommufd_access *access
IOAS access to act on
unsigned long iova
Starting IOVA
void *data
Kernel buffer to copy to/from
size_t length
Number of bytes to access
unsigned int flags
IOMMUFD_ACCESS_RW_* flags
Description
Copy kernel to/from data into the range given by IOVA/length. If flags indicates IOMMUFD_ACCESS_RW_KTHREAD then a large copy can be optimized by changing it into copy_to/from_user().
-
void iommufd_ctx_get(struct iommufd_ctx *ictx)¶
Get a context reference
Parameters
struct iommufd_ctx *ictx
Context to get
Description
The caller must already hold a valid reference to ictx.
-
struct iommufd_ctx *iommufd_ctx_from_file(struct file *file)¶
Acquires a reference to the iommufd context
Parameters
struct file *file
File to obtain the reference from
Description
Returns a pointer to the iommufd_ctx, otherwise ERR_PTR. The struct file
remains owned by the caller and the caller must still do fput. On success
the caller is responsible to call iommufd_ctx_put()
.
-
struct iommufd_ctx *iommufd_ctx_from_fd(int fd)¶
Acquires a reference to the iommufd context
Parameters
int fd
File descriptor to obtain the reference from
Description
Returns a pointer to the iommufd_ctx, otherwise ERR_PTR. On success
the caller is responsible to call iommufd_ctx_put()
.
-
void iommufd_ctx_put(struct iommufd_ctx *ictx)¶
Put back a reference
Parameters
struct iommufd_ctx *ictx
Context to put back
VFIO and IOMMUFD¶
Connecting a VFIO device to iommufd can be done in two ways.
First is a VFIO compatible way by directly implementing the /dev/vfio/vfio container IOCTLs by mapping them into io_pagetable operations. Doing so allows the use of iommufd in legacy VFIO applications by symlinking /dev/vfio/vfio to /dev/iommufd or extending VFIO to SET_CONTAINER using an iommufd instead of a container fd.
The second approach directly extends VFIO to support a new set of device-centric user API based on aforementioned IOMMUFD kernel API. It requires userspace change but better matches the IOMMUFD API semantics and easier to support new iommufd features when comparing it to the first approach.
Currently both approaches are still work-in-progress.
There are still a few gaps to be resolved to catch up with VFIO type1, as documented in iommufd_vfio_check_extension().
Future TODOs¶
Currently IOMMUFD supports only kernel-managed I/O page table, similar to VFIO type1. New features on the radar include:
Binding iommu_domain’s to PASID/SSID
Userspace page tables, for ARM, x86 and S390
Kernel bypass’d invalidation of user page tables
Re-use of the KVM page table in the IOMMU
Dirty page tracking in the IOMMU
Runtime Increase/Decrease of IOPTE size
PRI support with faults resolved in userspace